
ibm.com/redbooks

DB2 UDB V7.1
Performance Tuning
Guide

Tetsuya Shirai
Lee Dilworth

Raanon Reutlinger
Sadish Kumar

David Bernabe
Bill Wilkins

Brad Cassells

A comprehensive guide to improving
DB2 UDB database performance

Efficient disk layout, logical and
physical database design

Many tips to improve
database performance

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DB2 UDB V7.1 Performance Tuning Guide

December 2000

SG24-6012-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject
to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 2000)

This edition applies to Version 7, Release 1 of IBM DB2 Universal Database, Program Number
5648-D48 for use with the AIX V4.3.3 operating system.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special notices” on page 381.

Take Note!

Contents

Figures .ix

Tables. .xi

Preface . xiii
The team that wrote this redbook. xiv
Comments welcome. xvi

Chapter 1. Overview . 1
1.1 Measuring system performance . 1
1.2 Determining when system tuning will be cost-effective 2
1.3 Causes of performance problems . 2
1.4 Deciding when to tune the system . 3
1.5 Planning performance tuning . 4

1.5.1 Locate problems and establish goals . 5
1.5.2 Identify the cause . 5
1.5.3 Change one performance parameter at a time 6

1.6 Architecture and process overview . 8
1.6.1 DB2 agents . 9
1.6.2 Buffer pools . 10
1.6.3 Prefetchers. 10
1.6.4 Page cleaners . 10
1.6.5 Logs . 11
1.6.6 Deadlock detector . 13

Chapter 2. Setting up the Control Center . 15
2.1 Control Center . 15
2.2 How to set up the control center . 18

2.2.1 Install the file set . 18
2.2.2 Setting up the administration server . 19
2.2.3 Run the Control Center locally or remotely 19
2.2.4 Java application or Java applet. 19
2.2.5 Machine configuration scenario . 20
2.2.6 Control Center services setup. 21
2.2.7 Start the Control Center as a Java application 22
2.2.8 Start the Control Center as a Java applet 22

2.3 Performance tuning using Control Center . 22
2.3.1 Setting up configuration parameters . 22
2.3.2 Using the Configure Performance Wizard 26
2.3.3 Is this all I need to do for performance tuning? 28
2.3.4 Index Advisor Wizard . 29
© Copyright IBM Corp. 2000 iii

2.4 DB2 UDB wizards. 29

Chapter 3. Data storage management for performance 31
3.1 Disk layout . 31

3.1.1 Data placement . 32
3.1.2 Log placement . 33
3.1.3 Data availability and performance. 34
3.1.4 General performance recommendations 34

3.2 Mirroring, striping, and using RAID devices . 35
3.2.1 Summary of the most popular RAID levels 35
3.2.2 Performance considerations . 37
3.2.3 AIX logical volume parameters . 40
3.2.4 SSA RAID array parameters . 42
3.2.5 Effects on table space configuration . 46
3.2.6 The DB2_STRIPED_CONTAINERS variable 47
3.2.7 The DB2_PARALLEL_IO variable. 49
3.2.8 Multi-page file allocation . 50
3.2.9 Using Enterprise Storage Server . 50

3.3 Table spaces: performance considerations. 52
3.3.1 SMS table spaces. 52
3.3.2 DMS table spaces . 53
3.3.3 SMS versus DMS . 54
3.3.4 Table space categories. 54
3.3.5 Choosing table space types for data tables 55
3.3.6 Deciding number of tables and table spaces. 58
3.3.7 Choosing table space containers . 59
3.3.8 Configuring table space containers. 61
3.3.9 Deciding how many containers to use. 67
3.3.10 Other tips . 70

3.4 Buffer pools . 71
3.4.1 Mapping table spaces to buffer pools . 72
3.4.2 Buffer pool memory . 73
3.4.3 Extended storage . 76

3.5 Database logs . 78
3.5.1 Why logging performance is important . 78
3.5.2 Filesystem or raw logical volume . 78
3.5.3 Mirroring . 79
3.5.4 Placement on disks . 79
3.5.5 Number of log files . 80
3.5.6 Size of logs. 80
3.5.7 Flushing logs during on-line backup . 81

3.6 Before creating a database . 82
3.6.1 Number of instances. 83
iv DB2 UDB V7.1 Performance Tuning Guide

3.6.2 Number of databases per instance . 83

Chapter 4. Database design. 85
4.1 Tables and performance. 85

4.1.1 What to consider before creating tables 85
4.1.2 LOB considerations . 94
4.1.3 Creating tables . 96
4.1.4 Table locks . 104
4.1.5 Recovering dropped tables . 105

4.2 Indexes . 106
4.2.1 Separate table space for indexes? . 106
4.2.2 Free space . 107
4.2.3 Include columns . 108
4.2.4 Clustering indexes . 109
4.2.5 Index Advisor Wizard . 109
4.2.6 Other performance tips for indexes. 116

4.3 64-bit engine . 117
4.3.1 Libraries . 118

Chapter 5. Monitoring tools and utilities . 119
5.1 Measuring and monitoring . 119
5.2 Maintaining tuning information . 120

5.2.1 States subdirectory. 122
5.2.2 Queries subdirectory . 128
5.2.3 Results subdirectory . 128

5.3 AIX monitoring tools . 128
5.3.1 Online monitor — nmon . 128
5.3.2 Virtual memory statistics — vmstat . 131
5.3.3 Disk I/O statistics — iostat . 131
5.3.4 List paging space — lsps . 133
5.3.5 Process state — ps . 133

5.4 DB2 UDB tools . 134
5.4.1 Obtaining database access information 135
5.4.2 Snapshot monitor . 136
5.4.3 Event Monitor . 147
5.4.4 The Explain Facility . 156
5.4.5 The db2batch utility . 173
5.4.6 CLI/ODBC/JDBC Trace Facility . 177

Chapter 6. Tuning configuration parameters 193
6.1 Configuration parameters . 193

6.1.1 Database manager configuration parameters 193
6.1.2 Database configuration parameters . 194

6.2 Memory model . 194
v

6.2.1 Types of memory used by DB2 UDB. 195
6.2.2 How memory is used . 196

6.3 CPU related parameters . 199
6.3.1 Intra-partition parallelism . 199
6.3.2 Controlling the number of DB2 agent processes 200

6.4 Memory related parameters . 201
6.4.1 Sorting methods . 201
6.4.2 Agent pool size. 204
6.4.3 Disclaim memory areas for DB2 agents 205
6.4.4 FCM related parameters . 206
6.4.5 Package cache size . 206
6.4.6 Utility heap size . 208

6.5 Disk I/O related parameters . 208
6.5.1 Buffer pool size (buffpage) . 209
6.5.2 Extended STORagE (ESTORE) . 218
6.5.3 Logging . 219

6.6 Network related parameters . 222
6.6.1 Number of TCP/IP connection managers 222
6.6.2 Blocking . 223

Chapter 7. Tuning application performance . 229
7.1 Writing better SQL statements . 229

7.1.1 Specify only needed columns in the select list 230
7.1.2 Limit the number of rows by using predicates 230
7.1.3 Specify the FOR UPDATE clause . 234
7.1.4 Specify the OPTIMIZE FOR n ROWS clause 236
7.1.5 Specify the FETCH FIRST n ROWS ONLY clause 236
7.1.6 Specify the FOR FETCH ONLY clause 237
7.1.7 Avoid data type conversions . 237

7.2 Minimize data transmission . 239
7.2.1 Compound SQL . 239
7.2.2 Stored procedures . 240

7.3 Embedded SQL program . 243
7.3.1 Static SQL . 243
7.3.2 Dynamic SQL . 245

7.4 Call Level Interface and ODBC. 248
7.4.1 Improve performance of CLI/ODBC applications. 249

7.5 Java interfaces (JDBC and SQLJ) . 257
7.6 Concurrency. 258

7.6.1 Issue COMMIT statements . 259
7.6.2 Specify FOR FETCH ONLY clause . 259
7.6.3 INSERT, UPDATE, and DELETE at end of UOW 259
7.6.4 Isolation levels . 260
vi DB2 UDB V7.1 Performance Tuning Guide

7.6.5 Eliminate next key locks . 263
7.6.6 Close cursor with release . 264
7.6.7 Lock escalation. 265
7.6.8 Lock wait behavior . 268

Chapter 8. Tuning database utilities . 271
8.1 BACKUP DATABASE utility . 271

8.1.1 Command options . 272
8.1.2 Configuration parameters . 274
8.1.3 DB2CHKBP . 275
8.1.4 DB2ADUTL. 276
8.1.5 DB2LOOK . 276
8.1.6 RUNSTATS, REORGCHK, and REORG. 276

8.2 EXPORT utility . 277
8.3 IMPORT utility . 279

8.3.1 METHOD options . 281
8.3.2 MODIFIED BY COMPOUND=x . 282
8.3.3 COMMITCOUNT n . 282
8.3.4 Logging . 283

8.4 LOAD utility . 284
8.4.1 Command options . 286
8.4.2 Considerations for creating an index. 291
8.4.3 Load query . 293
8.4.4 Loading data into a table with clustered index 294

8.5 RESTORE DATABASE utility . 294
8.5.1 Command options . 296
8.5.2 Configuration parameters . 298

Chapter 9. Resolving performance problems 299
9.1 Identifying the cause . 299
9.2 Application problems . 300

9.2.1 Explaining the statements. 301
9.2.2 Monitoring the application/database . 302

9.3 Database configuration problems . 302
9.4 Data access problems . 305
9.5 Case study . 306

9.5.1 Non-tuned environment . 308
9.5.2 Tune configuration parameters . 312
9.5.3 Add a new index . 318
9.5.4 Increase buffer pool size . 322
9.5.5 Add a new index . 326
9.5.6 Reorganize table . 330
vii

Appendix A. Sample scripts . 335
A.1 Executing db2look. 335
A.2 Executing GET DBM CFG / GET DB CFG . 338
A.3 Display statements in the dynamic SQL cache. 342
A.4 Disk I/O activity . 351
A.5 Lock information . 356
A.6 Statement Event Monitor . 362
A.7 Benchmark tool . 373

Appendix B. Using the additional material . 379
B.1 Using the diskette . 379

B.1.1 System requirements for using the diskette 379
B.1.2 How to use the diskette . 379

B.2 Locating the additional material on the Internet 380

Appendix C. Special notices . 381

Appendix D. Related publications . 385
D.1 IBM Redbooks . 385
D.2 IBM Redbooks collections . 385
D.3 Other resources . 385
D.4 Referenced Web sites . 387

How to get IBM Redbooks . 389
IBM Redbooks fax order form . 390

Index . 391

IBM Redbooks review . 395
viii DB2 UDB V7.1 Performance Tuning Guide

Figures

1. Architecture and process overview . 9
2. Control Center . 16
3. Listing tables using the Control Center . 17
4. The db2setup utility . 18
5. The database manager configuration notebook . 23
6. The database configuration notebook . 25
7. Configure Performance Wizard — starting . 26
8. Configure Performance Wizard — input values. 27
9. Configure Performance Wizard — results . 28
10. lslv output. 40
11. SSA logical disk attributes . 43
12. Select SSA logical disk . 44
13. Changing ssa logical disk attributes. 44
14. Using the lscfg command to show adapter information 45
15. Using ssaraid command to show strip_size attribute. 47
16. DMS table space structure. 53
17. Minimum initial extent requirements for DMS table space. 66
18. Example with mmap variables set to OFF . 74
19. Example with mmap variables set to ON . 75
20. Index Advisor Wizard — starting from control center. 110
21. Index Advisor Wizard — defining workload . 111
22. Index Advisor Wizard — setting index space limit 112
23. Index Advisor Wizard — select calculation time 113
24. Index Advisor Wizard — choosing indexes to create. 114
25. Index Advisor Wizard — choosing indexes to remove. 114
26. Index Advisor Wizard — review results . 115
27. Sample of nmon with all elements displayed . 130
28. DB2 processes. 134
29. Snapshot data not shared between sessions . 138
30. Diagram of steps performed by SQL compiler . 158
31. DB2 UDB Control Center — accessing Visual Explain 166
32. Customized display of Explained statement history panel. 167
33. Operators and operands displayed in Visual Explain 168
34. VIsual Explain: graphical access plan for SQL Statement. 169
35. VIsual Explain: operator details . 170
36. VIsual Explain: detailed statistics information for an operand 171
37. CLI calls . 181
38. Memory segments used by DB2 UDB . 195
39. Database manager shared memory overview . 197
40. Database agent/application private/shared memory overview 198
© Copyright IBM Corp. 2000 ix

41. DB2 UDB components and predicates . 233
42. Deadlock between two applications updating same data 235
43. The db2ocat tool . 252
44. The db2ocat tool (refresh ODBC optimized catalog 253
45. Captured file. 256
x DB2 UDB V7.1 Performance Tuning Guide

Tables

1. The control center machine configuration scenarios 20
2. Page sizes, row, and column limits . 64
3. Table not in third normal form . 86
4. Table in third normal form (1). 86
5. Table in third normal form (2). 86
6. Table not in fourth normal form . 87
7. Table in fourth normal form (1) . 87
8. Table in fourth normal form (2) . 87
9. Suggested directory structure for maintaining point-in-time results 120
10. Snapshot monitor switch groups . 137
11. Snapshot monitor switch groups . 174
12. Data elements and configuration problems . 303
13. Ratios and configuration problems . 305
14. Lineitem table. 306
15. Order table . 307
© Copyright IBM Corp. 2000 xi

xii DB2 UDB V7.1 Performance Tuning Guide

Preface

DB2 Universal Database (DB2 UDB) is IBM’s relational database
management system that is at the core of many business-critical systems. It
is fully scalable from a single processor to symmetric multiple processors and
to massively parallel clusters, and features multimedia capabilities with
image, audio, video, text, spatial and other object relational support. Because
of its compelling features, power, and flexibility, many customers from small
businesses to large financial institutions have chosen DB2 UDB.

DB2 UDB environments range from stand-alone systems to complex
combinations of database servers and clients running on multiple platforms.
In any type of system, the common key for successful applications is
performance.

Particularly in a large and complex environment, performance analysis and
tuning are difficult tasks and require a good understanding of the environment
as well as the tools that you will use.

This IBM Redbook will provide you with guidelines for system design,
database design, and application design with DB2 UDB for AIX Version 7.1.
We will also discuss the methods that are available for performance analysis
and tuning.

Prior to reading this book, you need to have some knowledge of database
environments, as well as a basic understanding of activities that are typically
performed in a database environment.

This book was written from the AIX operating system perspective, and some
tools and commands discussed in this book may not be available on other
operating systems. However, the hints and methodologies described in this
book can be applicable for database systems which use DB2 UDB on other
operating systems.

This publication does not cover partitioned databases, which you can create
using DB2 UDB Enterprise-Extended Edition (EEE). Please see the DB2 UDB
Administration Guide - Planning, SC09-2946, the DB2 UDB Administration
Guide - Implementation, SC09-2944, and the DB2 UDB Administration Guide
- Performance, SC09-2945 for hints and tips for partitioned databases using
DB2 UDB EEE.
© Copyright IBM Corp. 2000 xiii

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Tetsuya Shirai is a Project Leader at the International Technical Support
Organization (ITSO), San Jose Center. He worked in Tokyo, Japan before
joining the San Jose ITSO. He has been with IBM for 8 years, working for the
last 4 years with DB2 UDB products. He has worked in the area of DB2
services, teaching classes to both customers and IBMers. He has also
provided consulting services to DB2 customers worldwide.

Lee Dilworth is a Software Support Specialist working within the RS/6000
Support Centre based in Basingstoke, UK. He has worked for IBM for 3
years. His main areas of expertise are DB2 UDB, AIX, and RS/6000 SP
systems. He is an IBM Certified, Advanced Technical Expert and SP
specialist and is currently the DB2 technical advisor within the Support
Centre, working with DB2 on Solaris and Linux as well as AIX.

Raanon Reutlinger has been a Technical Sales Specialist in the IBM
Software Group for the last 5 years, responsible for both pre-sale and
post-sale support in Israel. He is a Data Management I/T Specialist and is a
Certified Solutions Expert for DB2 Administration and DB2 Application
Development. Raanon holds a degree in Computer Science and has 15 years
experience in Database/Application Development projects, on the UNIX and
Windows platforms, both in the US and in Israel. His areas of expertise
include administration, development, monitoring, and tuning with DB2 UDB
EE and EEE, as well as DataJoiner, Data Replication, and the Visual
Warehouse products.

Sadish Kumar is a Software Engineer with DB2 Universal Database World
Trade Support in IGSI, India. He has been with the Level 2 Engine and
Application Support team for 1-1/2 years supporting customers on Intel and
UNIX platforms. His areas of expertise include installation, administration,
and problem determination in DB2 UDB EE environments.

David Bernabe works for the Integrated Technology Services organization in
IBM Spain. He has over 6 years of experience as a Database Specialist
working in application development and database administration. He has
provided technical support for DB2 UDB and Data Warehouse products on
UNIX and Intel platforms since he joined IBM in 1998.
xiv DB2 UDB V7.1 Performance Tuning Guide

Bill Wilkins is a Technical Specialist in the IBM Data Management
Consulting Services group in Toronto. Prior to this he worked in DB2
performance analysis in the IBM Toronto development laboratory for 6 years,
including 2 years as manager. He is an IBM Certified Advanced Technical
Expert in DB2 UDB and has over 20 years of experience in the IT industry.

Brad Cassells is the Lead Writer on the DB2 UDB Administration Guide in
the Information Development group of the IBM Toronto Software
Development Laboratory. For the last 8 years he has worked on DB2 UDB
information as team leader, planner, and writer. He is an IBM Certified
Solutions Expert on DB2 UDB Database Administration. In addition, he has 5
years of DB2 for VM and VSE experience, and has worked at IBM for 17
years.

Thanks to the following people for their invaluable contributions to this
project:

Berni Schiefer
Matthew Huras
Roger Zheng
Haider Rizvi
Cadambi Sriram
Hebert Pereyra
Kaarel Truuvert
Dale McInnis
Adriana Zubiri
Lily Lugomirski
Dwaine Snow
Sean McKeough
Mike Winer
Susan Visser
IBM Toronto Lab

Mikiko Satoh
IBM Yamato Lab

Nhut Bui
IBM Silicon Valley Lab

John Aschoff
IBM Storage Systems Division
xv

Mary Comianos
Emma Jacobs
Yvonne Lyon
Deanna Polm
International Technical Support Organization, San Jose Center

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 395 to
the fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
xvi DB2 UDB V7.1 Performance Tuning Guide

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Overview

DB2 UDB environments range from stand-alone systems to complex
combinations of database servers and clients running on multiple platforms.
In any type of system, the common key for successful applications is
performance.

When you plan, design, and build your database system, you need to
understand several considerations about logical and physical database
design, application design, and configuration parameters of DB2 so that your
database system can meet the performance requirements of your application.

While its performance may initially be good, as time goes on, your system
may need to serve more users, store more data, and process more complex
queries. Consequently, the increased load level of your database server will
affect its performance. This could be the time to upgrade to more powerful
equipment. However, before investing in equipment, you may be able to
improve performance by simply tuning the database system.

This chapter provides an overview of the tasks involved in tuning the
database environment to obtain optimal performance. It also provides an
overview of the architecture and processes of DB2 UDB.

1.1 Measuring system performance

Performance is the capacity of your system to produce the desired results
with a minimum cost of time or resources. It can be measured through
response time, throughput, and availability.

Performance is not an absolute value. The performance of an information
system can be rated as better or worse, compared to a reference value. First,
the reference value needs to be established according to the requirements of
the information system; then the results of tuning efforts can be compared
against it. Those requirements, or the service level agreement, may include
the throughput of the system, limits on the response time for a percentile of
transactions, or any other issues relevant to the end user.

Units of measurement are usually based on the response time of a given
workload. Other units of measurement may be based on transactions per
second, I/O operations, CPU use, or a combination of the above.

Avoid setting limited performance goals such as “The response time of all
transactions must be less than 3 seconds”. This is not a practical goal,
© Copyright IBM Corp. 2000 1

because your application may submit a complex query which takes 10
minutes (even though this does not happen everyday). Rather, a more
reasonable goal might be “This particular query must be completed in 2
minutes”. Once you have set a measurable performance goal, monitor your
system’s actual performance and compare it with that goal. Then consider
what you can do to fill the gap.

1.2 Determining when system tuning will be cost-effective

Your database system is a complex data-processing environment that
includes hardware resources, software components, and application
programs. DB2 starts many processes that perform different functions in your
database system, and it allocates the necessary memory areas, thus
consuming hardware resources.

As system performance degrades, you may at first be tempted to upgrade
your system with more powerful and expensive equipment. However, in the
meantime, you may be able to improve the performance of your existing
resources by simply tuning your operating system and databases. By carrying
out a performance tuning project, you can balance your hardware resources
to each part of the database system, including processes and the required
memory areas.

Specific goals of tuning could include:

• Processing a larger or more demanding workload without buying new
hardware.

• Obtaining faster system response times, or higher throughput, without
increasing processing costs.

• Reducing processing costs without negatively affecting service to your
users, and spending the money for other resources.

Other benefits are intangible; for example, greater user satisfaction and
productivity resulting from faster response times. If you manage an Internet
business, higher performance — including quick response time and high
availability — may prevent lost business opportunities. When weighing the
cost of performance tuning against its possible benefits, all of these benefits
need to be considered.

1.3 Causes of performance problems

There are many possible causes of performance problems. Below we
describe those most frequently encountered.
2 DB2 UDB V7.1 Performance Tuning Guide

Poor application design
When you experience performance problems, in many cases these stem from
poor application design and inefficient programs. The database itself may not
have any problems at all. For example, SQL statements written
inappropriately can degrade overall performance, even though your database
is well designed and tuned. Chapter 7, “Tuning application performance” on
page 229 describes tips you should take into consideration when designing
and developing applications.

Poor system and database design
Poor design of your system and/or databases can be also a reason for
performance problems. Inefficient disk storage layout, or failing to consider
performance when designing and implementing your database, will certainly
degrade performance, and can be very difficult to fix once your production
system has been started. Chapter 3, “Data storage management for
performance” on page 31 describes tips you should take into consideration
when designing disk storage layout and databases.

System resource shortages
System resource shortages can cause bottlenecks in your database system:

• CPU
Too many users, or running applications on a CPU, may cause system
degradation.

• Memory
Every process will use some physical memory. If you have insufficient
memory, you may find that applications will fail, or your system will start
thrashing.

• Disk I/O
I/O performance can play an important part in a database system. Too
much activity on a single disk or I/O bus may cause performance
problems.

• Network
Unless you are in a stand-alone environment, the network plays an
important role. If the network is too slow, then this may appear to the client
as a performance problem at the database server.

1.4 Deciding when to tune the system

As mentioned in the previous section, if the reason for poor performance
exists in the system or database design, this will not be as easy to fix as
simply tuning performance parameters of the operating system or the
Chapter 1. Overview 3

database manager. Therefore, you should be aware that performance tuning
is not an add-on activity to be done in the production system when there is a
problem. Performance needs to be a design goal. It must be taken into
consideration in each step of the project life cycle:

• Planning
Choose the right hardware, software, and network for your system. Take
care of future growth.

• Design
Choose an appropriate data model and programming interfaces.

• Development
Take performance into consideration when developing application
programs. Choose the right locking strategy.

• Testing/acceptance
Use the same volume of data and configuration as the production system.

• Production
Perform proactive performance tuning.

In this book, we discuss not only tuning the operating system and the
database manager/database configuration parameters, but also various
considerations associated with disk storage layout, database design, and
application design.

1.5 Planning performance tuning

When you carry out a performance tuning project, the worst possible
approach is to change the value of many performance tuning parameters
without having any idea of what is causing the performance problem. Barring
miracles, performance will only get worse, and you will never know which
parameter was the cause. So, even if you are anxious for results, you will
benefit from following a more methodical approach:

1. Find which queries are slow.

2. Measure the current performance and set the performance goal.

3. Monitor your system and identify where the bottleneck is.

4. Decide where you can afford to make trade-offs, and which resources can
bear an additional load.

5. Change only one performance parameter to relieve the bottleneck.

6. Execute the queries again to monitor your system, and check if the
performance meets your goal.
4 DB2 UDB V7.1 Performance Tuning Guide

7. If the performance does not meet the goal, go back to step 3.

1.5.1 Locate problems and establish goals
When a user reports that response time is too slow, you first need to identify
what the problem is. You may need to check:

• Whether this user is the only one who has experienced this problem, or
whether others are also complaining about the same problem.

• Whether the poor performance was experienced only in a particular
application or queries.

• Whether the problem is really one of response time. Sometimes, another
problem (such as the application waiting for a response from the user)
might be the cause of poor response time.

Also, you should check:

• When the user just noticed the poor performance today, or has been
seeing it for a long time.

• How slow it is — ten percent slower, or ten times slower usual — for
example.

• Whether someone had made significant changes on the system just
before the performance problem was noticed.

To carry out a performance tuning project, it is important to establish the
objective. Find which queries are slow, and set a measurable performance
goal such as “The response time of this particular query should be less than
30 seconds”.

1.5.2 Identify the cause
Once you have focused on particular queries, execute those queries and
monitor the system by using the monitoring tools which the operating system
and DB2 provide, and identify where the bottleneck is. Chapter 5, “Monitoring
tools and utilities” on page 119 presents several tools you can use.

If possible, you should execute the queries in the system where the problem
has been observed. If you have to execute them in another environment, it is
important to replicate the original environment as carefully as possible. For
example, if the user is running in client-server mode, then you should set up a
client-server environment to test the queries.
Chapter 1. Overview 5

This step is important, because if you tune resources that are not the primary
cause of performance problems, your efforts will have little or no effect on
response time until you have relieved the major constraints. Also, the
changes you introduce can make subsequent tuning work more difficult.

1.5.3 Change one performance parameter at a time
Even if you find more than one possible cause and you are sure that tuning all
of them will be beneficial, you should still change only one performance
tuning parameter at a time. It will be very difficult to evaluate how much
benefit each change has contributed if you change more than one parameter.

The appropriate values for parameters affecting performance can best be
determined by performing tests and modifying the values of the parameters
until the point of diminishing returns for performance is found. If performance
versus parameter values were to be graphed, the point where the curve
begins to plateau or decline would indicate the point at which additional
allocation provides no additional value to the application, and is therefore
simply wasting memory.

DB2 provides configuration parameters to balance your hardware resources
to each part of the database system, including processes and required
memory areas. These configuration parameters can be divided into two
groups — the database manager configuration parameters and the database
configuration parameters, depending on whether their settings affect instance
level, or database level.

To update the database manager configuration parameters, you can use the
Control Center GUI tools (as discussed in Chapter 2, “Setting up the Control
Center” on page 15). Or, you can use the following command:

UPDATE DBM CFG USING parameter_name value

To update the database configuration parameters, you can use the Control
Center GUI tools, or use the following command:

UPDATE DB CFG FOR dbname USING parameter_name value
6 DB2 UDB V7.1 Performance Tuning Guide

DB2 also provides the registry variables which control the behavior of the
database manager. The registry variables can affect both instance level and
machine level. We introduce some of the available registry variables which
affect the system performance in this book.

To update the registry variables, you can use the following command:

db2set variable=value

You need to restart the database manager when you change the registry
variables.

Before making any changes to performance parameters, be prepared to back
out those changes if they do not have the desired effect or have a negative
effect on the system. For example, the db2look utility with -f option extracts
the current values of the configuration parameters and the DB2 registry
variables. The output of the utility is a script file which you can execute to go
back to the setting at the time when the utility was executed. The db2look
utility also extracts the required DDL statements to reproduce the database
objects of a production database on a test database. This utility is very useful
when testing against a production database is not possible. See the DB2
UDB Command Reference, SC09-2951 for more information.

Apart from changing performance parameters, creating indexes may improve
query performance. Defining appropriate indexes may reduce disk I/O and
data sorts significantly. You can use the Explain tool to see whether indexes
can be used for particular queries.

Once you have created a new database, we recommend that you use the
Configure Performance Wizard to obtain recommended values for
database manager and database configuration parameters and set them
as initial values rather than using default values. The Configure
Performance Wizard will suggest suitable values for those parameters
based on factors such as workload and server configuration (for example,
the number of CPUs). We discuss this wizard in Chapter 2, “Setting up the
Control Center” on page 15.

Note

The db2look utility with -f option only extracts configuration parameters and
registry variables that affect the DB2 query optimizer. Not all registry
variables might be extracted.

Note
Chapter 1. Overview 7

As we have stated, the major causes of performance problems are actually
poor application design or poor database design, rather than the database
configuration itself. Before tuning performance parameters, check to make
sure that your application or database design is not a cause. Chapter 3, “Data
storage management for performance” on page 31 and Chapter 7, “Tuning
application performance” on page 229 describe the points you should
consider when designing databases and developing applications.

1.6 Architecture and process overview

When working with the performance of the DB2 databases, it is important for
you to have a basic understanding of the DB2 architecture and processes. In
this section, we provide an overview of the architecture and processes.

Figure 1 shows a diagram of the architecture and processes of DB2 UDB.

Each client application is linked with the DB2 client library and communicates
with the DB2 Server using shared memory and semaphores (local clients), or
a communication protocol such as TCP/IP and APPC (remote clients).

On the server side, activity is controlled by engine dispatchable units (EDUs).
EDUs are implemented as processes on UNIX, including AIX, and shown as
circles or groups of circles in Figure 1.

DB2 Clients cannot use Named Pipe or NetBIOS to communicate with DB2
on UNIX operating systems, including AIX.

Note

EDUs are implemented as threads within a single process on Windows
32-bit operating systems and OS/2.

Note
8 DB2 UDB V7.1 Performance Tuning Guide

Figure 1. Architecture and process overview

1.6.1 DB2 agents
DB2 agents, including coordinator agents and subagents, are the most
common type of DB2 processes which carry out the bulk of the SQL
processing on behalf of applications. DB2 assigns a coordinator agent which
coordinates the processing for an application and communicates with it.

If you disable intra-partition parallelism, the assigned coordinator agent will
pursue all the requests from the application. If you enable intra-partition
parallelism, you will see a set of subagents assigned together to the
application to work on processing the application requests.

If your database server machine has multiple processors, by letting multiple
subagents work together, complex queries requested by the applications can
exploit those processors and obtain the result faster. In Figure 1, we assume
that intra-partition parallelism is enabled. On UNIX, you can observe
coordinator agent processes (db2agent) and subagent processes (db2agntp)
using the ps command.

Disks

Clients

DB2 UDB Server

Prefetchers

Page

Cleaners

Log

Logger

Coordinator

 Agent

Subagents

Shred Memory+Semaphore, TCP/IP, APPC, IPX/SPX,

 Named Pipe, NetBIOS

Buffer Pool(s)

Write
Log Requests

Async IO Prefetch Requests

Scatter/Gather
I/Os

DB2 UDB Client Library

Client Application

Log Buffer

Parallel, Page
write requests

Parallel,Big-Block,
read requests

Common prefetch
request queueSubagents

Coordinator

 Agent

Deadlock

Detector

Victim
notifications
Chapter 1. Overview 9

1.6.2 Buffer pools
A buffer pool is an area of storage memory where database pages of user
table data, index data, and catalog data are temporarily moved from disk
storage. DB2 agents read and modify data pages in the buffer pool. The
buffer pool is a key influencer of overall database performance because data
can be accessed much faster from memory than from a disk. If more of the
data needed by applications were present in the buffer pool, then less time
would be needed to access this data, compared to the time taken to find the
data on disk storage.

1.6.3 Prefetchers
Prefetchers are present to retrieve data from disk and move it into the buffer
pool before applications need the data. For example, applications needing to
scan through large volumes of data would have to wait for data to be moved
from disk into the buffer pool if there were no data prefetchers.

Agents of the application send asynchronous read-ahead requests to a
common prefetch queue. As prefetchers become available, they implement
those requests by using big-block or scatter read input operations to bring the
requested pages from disk to the buffer pool. On UNIX, you can see
prefetcher processes (db2pfchr) by using the ps command.

Having multiple disks for storage of the database data means that the data
can be striped across the disks. This striping of data enables the prefetchers
to use multiple disks at the same time to retrieve data. We discuss disk layout
considerations in Chapter 3, “Data storage management for performance” on
page 31.

1.6.4 Page cleaners
Page cleaners are present to make room in the buffer pool before prefetchers
read pages on disk storage and move into the buffer pool. For example, if you
have updated a large amount of data in a table, many data pages in the buffer
pool may be updated but not written into disk storage (these pages are called
dirty pages). Since prefetchers cannot place fetched data pages onto the dirty
pages in the buffer pool, these dirty pages must be flushed to disk storage
and become “clean” pages so that prefetchers can place fetched data pages
from disk storage.

Page cleaners are independent of the application agents, that look for, and
write out, pages from the buffer pool to ensure that there is room in the buffer
pool. On UNIX, you can see page cleaner processes (db2pclnr) using the ps

command.
10 DB2 UDB V7.1 Performance Tuning Guide

Without the existence of the independent prefetchers and page cleaners, the
DB2 agents would have to do all of the reading and writing of data between
the buffer pool and disk storage. The configuration of the buffer pool, along
with prefetchers and page cleaners, for instance, the size of the buffer pool
and the number of prefetchers and page cleaners, control the availability of
the data needed by the applications.

1.6.5 Logs
Changes to data pages in the buffer pool are logged. Agent processes
updating a data record in the database update the associated page in the
buffer pool and write a log record into a log buffer. The written log records in
the log buffer will be flushed into the log files asynchronously by the logger.
On UNIX, you can see a logger process (db2loggr) for each active database
using the ps command.

Neither the updated data pages in the buffer pool nor the log records in the
log buffer are written to disk immediately to optimize performance. They are
written to disk by page cleaners and the logger respectively.

The logger and the buffer pool manager cooperate and ensure that the
updated data page is not written to disk storage before its associated log
record is written to the log. This behavior ensures that the database manager
can obtain enough information from the log to recover and protect a database
from being left in an inconsistent state when the database is crashed
resulting from an event such as a power failure.

If an uncommitted update on a data page was written to disk, the database
manager uses the undo information in the associated log record to undo the
update. If a committed update did not make it to disk, the database manager
uses the redo information in the associated log record to redo the update.
This mechanism is called crash recovery. The database manager performs a
crash recovery when you restart the database.

When a page cleaner flushes a dirty page to disk storage, the page cleaner
removes the dirty flag but leaves the page in the buffer pool. This page will
remain in the buffer pool until a prefetcher or a DB2 agent overrides it.

Note
Chapter 1. Overview 11

The data in the log buffer is only forced to disk:

• Before the corresponding data pages are being forced to disk. This is
called write-ahead logging.

• On a COMMIT; or after the value of the number of COMMITS to group
(mincommit) database configuration parameter is reached.

• When the log buffer is full. Double buffering is used to prevent I/O waits.

Update data pages
When an agent updates data pages in a buffer pool, these updates must be
logged and flushed to disk. The protocol described here minimizes the I/O
required by the transaction and also ensures recoverability.

First, the page to be updated is pinned and latched with an exclusive lock. A
log record is written to the log buffer describing how to redo and undo the
change. As part of this action, a log sequence number (LSN) is obtained and
is stored in the page header of the page being updated. The change is then
made to the page. Finally, the page is unlatched and unfixed. The page is
considered to be dirty because there are changes to the page that have not
been written out to disk. The log buffer has also been updated.

Both the data in the log buffer and the dirty data page will need to be forced to
disk. For the sake of performance, these I/Os are delayed until a convenient
point (for example, during a lull in the system load), or until necessary to
ensure recoverability, or to bound recovery time. More specifically, a dirty
page is forced to disk when a page cleaner acts on the page as the result of
these situations:

• Another agent chooses it as a victim.

• The CHNGPGS_THRESH database configuration parameter percentage value is
exceeded. Once exceeded, asynchronous page cleaners wake up and
write changed pages to disk.

• The SOFTMAX database configuration parameter percentage value is
exceeded. Once exceeded, asynchronous page cleaners wake up and
write changed pages to disk.

We discuss the CHNGPGS_THRESH database configuration parameter and the
SOFTMAX database configuration parameter in Chapter 6, “Tuning configuration
parameters” on page 193.

If you set the number of page cleaners to zero and no page cleaner is started,
a dirty page is forced to the disk storage by another DB2 agent which
chooses it as a victim.
12 DB2 UDB V7.1 Performance Tuning Guide

1.6.6 Deadlock detector
A deadlock is a situation in which more than one application is waiting for
another application to release a lock on data, and each of the waiting
applications is holding data needed by other applications through locking. In
such a situation, the applications can wait forever until the other application
releases the lock on the held data. The other applications do not voluntarily
release locks on data that they need. A process is required to break these
deadlock situations.

DB2 uses a background process, called the deadlock detector, to check for
deadlocks. When the deadlock detector finds a deadlock situation, one of the
deadlocked applications will receive an error code and the current unit of
work for that application will be rolled back automatically by DB2. When the
rollback is complete, the locks held by this chosen application are released,
thereby allowing other applications to continue.
Chapter 1. Overview 13

14 DB2 UDB V7.1 Performance Tuning Guide

Chapter 2. Setting up the Control Center

Setting proper values for database manager/database configuration
parameters and creating appropriate indexes can achieve a significant
performance improvement; however, this task is not easy if you are a new
DBA. DB2 UDB provides the Configure Performance Wizard, which helps you
to tune performance related configuration parameters by requesting
information about the database, its data, and the purpose of the system. For
creating indexes, DB2 provides the Index Advisor Wizard, which you can use
to determine which indexes to create or drop for a given set of SQL
statements.

These wizards or SmartGuides, as they are sometimes called, can be
invoked from the Control Center. The Control Center is the central point of
administration for the DB2 Universal Database. The Control Center provides
the user with the tools necessary to perform typical database administration
tasks. It allows easy access to other server administration tools, gives a clear
overview of the entire system, enables remote database management, and
provides step-by-step assistance for complex tasks.

DB2 provides the install script (db2setup), but the Control Center is not
installed by default on UNIX platforms. In this chapter we introduce the
Control Center and describe how to set up the Control Center.

2.1 Control Center

Figure 2 is an example of the information available from the Control Center. In
our example, the Control Center is started at an AIX server, which has one
local instance and two remote DB2 server catalog entries.
© Copyright IBM Corp. 2000 15

Figure 2. Control Center

The Systems object represents the one local and two remote machines. To
display all the DB2 systems that your system has cataloged, expand the
object tree by clicking on the plus sign (+) next to Systems. The left portion of
the screen lists available DB2 systems. We can see from Figure 2 that the
system ununbium contains an instance, db2inst1. The instance db2inst1 has
four databases.

When Systems is highlighted, details about each system are shown in the
Contents Pane. We can see that they are AIX systems.

The main components of the Control Center are listed below:

• Menu Bar — This is used to access the Control Center functions and
online help.

• Tool Bar — This is used to access the other administration tools.

• Objects Pane — This is shown on the left-hand side of the Control Center
window. It contains all the objects that can be managed from the Control
Center as well as their relationship to each other.

Menu Bar

Tool Bar

Contents Pane

Contents Pane Tool Bar

Objects
Pane
16 DB2 UDB V7.1 Performance Tuning Guide

• Contents Pane — This is found on the right side of the Control Center
window and contains the objects that belong or correspond to the object
selected on the Objects Pane.

• Contents Pane Toolbar — These icons are used to tailor the view of the
objects and information in the Contents pane. These functions can also be
selected in the View menu.

Hover Help is also available in the Control Center, providing a short
description for each icon on the tool bar as you move the mouse pointer over
the icon.

If you want to see each database object in detail, you can expand a database
icon and list each database object by clicking on the plus sign (+) next to a
database icon. Figure 3 shows the table lists that are defined in the SAMPLE

database of the db2inst1 instance.

Figure 3. Listing tables using the Control Center
Chapter 2. Setting up the Control Center 17

2.2 How to set up the control center

We will now discuss various configurations to manage DB2 running on an AIX
machine using the Control Center.

2.2.1 Install the file set
DB2 provides the install utility (db2setup) which can perform all of the tasks
required to install DB2 but the Control Center is not installed by default. If you
want the Control Center to run on the DB2 server, make sure you select the
Control Center to be installed. Start the db2setup utility, select the option to
install the DB2 product, select Configure, and check Control Center to be
installed (Figure 4).

Figure 4. The db2setup utility

If you do not use the db2setup utility and use the AIX installp command or
SMIT to install the DB2 products, select the file set db2_07_01.wcc to be
installed.

The Control Center is written in Java and can be run as a Java application or
as a Java applet through a Web server. In both cases, you need a supported
Java Virtual Machine (JVM) installed on your machine to run the Control
Center. A JVM can be a Java Runtime Environment (JRE) for the Control
Center applications, or a Java-enabled browser for the Control Center
applets.
18 DB2 UDB V7.1 Performance Tuning Guide

On AIX, the db2setup utility installs the correct JRE (1.1.8.6 for Version 7.1)
for you during DB2 installation if another JRE was not detected on your
system. If another JRE was detected on your AIX system during the
installation, the JRE that comes with DB2 was not installed. In this case, you
must install the correct JRE level before running the Control Center.

For more information about installing the products, please see the manual
DB2 for UNIX Quick Beginnings,GC09-2970.

2.2.2 Setting up the administration server
The Administration Server (DAS) instance responds to requests from the
Control Center and other DB2 Administration Tools. The DAS instance must
be running on every DB2 server that you want to administer using the Control
Center. You can create the DAS instance using the db2setup utility during the
product installation. The dasicrt command under /usr/lpp/db2_07_01/instance
directly can also be used to create the DAS instance.

The DAS instance is started automatically. You can start and stop it using the
db2admin start and db2admin stop command.

2.2.3 Run the Control Center locally or remotely
There are two methods to use the Control Center to manage DB2. One is
installing and starting the Control Center on the server and managing local
DB2 instances and databases. The other one is installing and starting the
Control Center on a DB2 client on which the databases on the server are
cataloged, and managing them as remote DB2 instances and databases. For
example, you can manage the instances and databases created on an AIX
server machine using the Control Center running on a Windows NT client.

If you want to use the Control Center on the client machines, be aware that
the DB2 Run-Time Client does not provide the GUI tools. You should install
the DB2 Administration Client or DB2 Software Developer’s kit. In this case,
the process of the Control Center is running on the client machine, and the
instances and databases on the server machine are managed remotely.

2.2.4 Java application or Java applet
Java applications run just like other applications on your machine, provided
that you have the correct JRE installed. As already stated, on AIX, the
db2setup utility installs the correct JRE (1.1.8.6 for Version 7.1) for you during
DB2 installation if another JRE was not detected on your system.
Chapter 2. Setting up the Control Center 19

If you intend to use the Control Center on Windows 32-bit operating systems,
the correct JRE level is installed or upgraded for you, and therefore you do
not need to be concerned about the JRE level.

If you intend to use the Control Center on other operating systems than
Windows and AIX, you must install the correct JRE level before running the
Control Center. See the manual Installation and Configuration Supplement,
GC09-2957 for information about the correct JRE level you need to install.
Also, check the latest service information on the Control Center at the
following URL:

http://www.ibm.com/software/data/db2/udb/db2cc/

Java applets are programs that run within Java-enabled browsers. The
Control Center applet code can reside on a remote machine and is served to
the client's browser through a Web server. Since there are no supported
browsers for AIX and other UNIX operating systems, this is not an option you
can choose if you want to use the Control Center from UNIX machines.
However, on Windows 32-bit or OS/2 operating systems, you can use the
Control Center as a Java applet using a supported Java-enabled browser.
See the manual Installation and Configuration Supplement, GC09-2957 for
information about the supported browser.

2.2.5 Machine configuration scenario
As already discussed, you can run the Control Center to manage local
databases or remote databases, and you can also run it as a Java application
or as a Java applet. Therefore, you can select one of the four configuration
scenarios shown in Table 1, to use the Control Center. This table shows
different ways of installing the required components.

Table 1. The control center machine configuration scenarios

Scenario Machine A Machine B Machine C

1.Stand-alone
Java Application

DB2 Server
Control Center
(Java application)
JDBC Applet Server
JRE

2.Two-tier
Java Application

DB2 Admin. Client
Control Center
(Java application)
JDBC Applet Server
JRE

DB2 Server
20 DB2 UDB V7.1 Performance Tuning Guide

Scenario 1 and Scenario 2 are cases that the Control Center runs as a Java
application. In Scenario 1, the Control Center runs on the same machine as
the DB2 server runs. In Scenario 2, the Control Center runs on a different
machine as the DB2 server runs and accesses it through the DB2
Administration Client. Machine A can be any supported platform for the DB2
Administration Client.

Scenario 3 and Scenario 4 are cases that the Control Center runs as a Java
applet. In Scenario 3, the Control Center applet code resides on the same
machine as the DB2 server runs, and it is served to the client's browser
through a Web server. In Scenario 4, the Control Center applet code is
served to the client's browser through a Web server as well; however, it
resides on a different machine in which the DB2 server runs and access it
through the DB2 Administration Client. In Scenarios 3 and 4, only a Windows
or OS/2 machine can be Machine A.

2.2.6 Control Center services setup
In all scenarios, the DB2 JDBC Applet Server must be started with a user
account that has SYSADM authority on the machine where the DB2 JDBC
Applet Server resides. You can set your DB2 JDBC Applet Server to start
automatically at startup time.

On AIX or other UNIX operating systems containing the DB2 JDBC Applet
Server, enter the db2jstrt 6790 command.

On the Windows 32-bit or OS/2 operating system containing the DB2 JDBC
Applet Server, enter the db2jstrt 6790 command to start the DB2 JDBC
Applet Server. On Windows NT, you can also start the DB2 JDBC Applet
Server by clicking on Start->Control Panel->Services. Select the DB2
JDBC Applet Server - Control Center service and click on the Start button.

3.Two-tier
Java Applet

Supported Browser
(Windows, OS/2 only)

DB2 Server
Control Center
(Java applet)
JDBC Applet Server
Web server

4.Three-tier
Java Applet

Supported Browser
(Windows, OS/2 only)

DB2 Admin. Client
Control Center
(Java applet)
JDBC Applet Server
Web server

DB2 Server

Scenario Machine A Machine B Machine C
Chapter 2. Setting up the Control Center 21

2.2.7 Start the Control Center as a Java application
To start the Control Center as a Java application, execute the db2cc command
from the command prompt. If you have started the DB2 JDBC Applet Server
with a port number other than the default (6790), enter the new port number
after the db2cc command, such as db2cc 6789.

2.2.8 Start the Control Center as a Java applet
To run the Control Center as a Java applet, you must have a Web server set
up on the machine that contains the Control Center applet code and the DB2
JDBC Applet Server. The Web server must allow access to the sqllib

directory.

If you choose to use a virtual directory, substitute this directory for the home
directory. For example, if you map sqllib to a virtual directory called temp on
a server named yourserver, then a client would use the URL:

http://yourserver/temp

For more information on installing and configuring the Control Center as a
Java applet, see the manual Installation and Configuration Supplement,
GC09-2957.

2.3 Performance tuning using Control Center

You can tune the database manager and database configuration parameters
from the Control Center. You can specify the values for each parameter
through the GUI panel, or you can use the Configure Performance Wizard to
obtain recommended values and apply them. Here we introduce both
methods.

2.3.1 Setting up configuration parameters
The Control Center provides you the GUI panel to change the database
manager and database configuration parameters. To bring up the panel to
update the database manager configuration parameters, right-click on an

The number 6790 specified is the port number that the DB2 JDBC Applet
Server is using; however, this is just an example (and default value). Any
number between 1024 and 65535 that is not already in use can be used.

Note
22 DB2 UDB V7.1 Performance Tuning Guide

instance icon in the Control Center and select Configure. You will see the
Database Manager Configuration Notebook that displays current values of
the database manager configuration parameters grouped by function. Each
notebook page has the Parameters controls, a Value field to change the value
of the selected configuration parameter, and a Hint box that gives a brief
description of what the configuration parameter is used for. Figure 5 shows
the Performance page that contains the database manager configuration
parameters that affect the performance of the DB2 instance.

Figure 5. The database manager configuration notebook
Chapter 2. Setting up the Control Center 23

To bring up the panel to update the database configuration parameters,
right-click on a database icon in the Control Center and select Configure.
You will see the Database Configuration Notebook that displays current
values of the database configuration parameters grouped by function. Each
notebook page has the Parameters controls, a Value field to change the value
of the selected configuration parameter, and a Hint box that gives a brief
description of what the configuration parameter is used for. Figure 6 shows
the Performance page that contains the database configuration parameters
that affect the performance of the SAMPLE database.
24 DB2 UDB V7.1 Performance Tuning Guide

Figure 6. The database configuration notebook
Chapter 2. Setting up the Control Center 25

2.3.2 Using the Configure Performance Wizard
If you are a new DBA or someone who only administers a database
occasionally, the Configure Performance Wizard is a very useful tool to tune
the configuration parameters. Even if you are an experienced DBA, we
recommend that you use the Configure Performance Wizard when you start
building a new database and obtain its recommendation. You should start the
recommended values instead of the default values of the database manager
and database configuration parameters.

To use the Configure Performance Wizard, perform the following steps:

1. Expand the Object Tree to display Databases folder.

2. Right-click database to be changed, select Configure Performance
Using Wizard from pop-up menu or from the Selected option on the menu
bar. This is shown in Figure 7.

Figure 7. Configure Performance Wizard — starting
26 DB2 UDB V7.1 Performance Tuning Guide

3. Work through each page, changing information where necessary. The
Configure Performance Wizard will calculate and provide the appropriate
value of each database manager and database configuration parameter
based on information you supply. The configuring operation using the
Configure Performance Wizard consists of 7 steps. You should enter or
select the value in each step. Figure 8 shows the first step, in which you
need to enter how much of this server’s memory you want the database
manager to use.

Figure 8. Configure Performance Wizard — input values
Chapter 2. Setting up the Control Center 27

4. The Configure Performance Wizard calculates the appropriate value of
each database manager and database configuration parameter when you
finish entering the value of all steps. An example of the Results page can
be seen in Figure 9. It shows the current value and suggested value of
each configuration parameter. You can apply these recommendations
immediately or save to Script Center to apply them later.

Figure 9. Configure Performance Wizard — results

2.3.3 Is this all I need to do for performance tuning?
The best way to think of the recommendations made by the Configure
Performance Wizard is as a starting point when you create a new database,
or when an existing database has been changed significantly and you need to
find better values for configuration parameters. Use the suggested values as
a base on which to make further adjustments as you try to optimize the
performance of your database. We hope that this book will aid you in this
regard.
28 DB2 UDB V7.1 Performance Tuning Guide

2.3.4 Index Advisor Wizard
Creating appropriate indexes is crucial for optimal database performance, but
this is a difficult task for a new DBA. To help with this task, DB2 provides the
Index Advisor Wizard, which will determine the best set of indexes for a given
workload.

We discuss the Index Advisor Wizard in Chapter 3, “Data storage
management for performance” on page 31.

2.4 DB2 UDB wizards

Besides the Configure Performance Wizard and the Index Advisor Wizard,
DB2 provides the following wizards:

• Backup Database — This wizard asks you basic questions about the data
in the database, the availability of the database, and recoverability
requirements. It then suggests a backup plan, creates the job script, and
schedules it.

• Create Database — This wizard allows you to create a database, assign
storage, and select basic performance options.

• Create Table space — This wizard lets you create a new table space and
set basic storage performance options.

• Create Table — This wizard helps you to design columns using
predefined column templates, create a primary key for the table, and
assign the table to one or more table spaces.

• Restore Database — This wizard walks you through the process of
recovering a database.

• Configure Multi-Site Update — This wizard lets you configure databases
to enable applications to update multiple sites simultaneously when it is
important that the data at all the sites must be consistent.
Chapter 2. Setting up the Control Center 29

30 DB2 UDB V7.1 Performance Tuning Guide

Chapter 3. Data storage management for performance

When working with relational databases, the main objective is to be able to
store and retrieve data quickly and efficiently. One important consideration
when trying to design a new database or analyze a performance problem on
an existing database is the physical layout of the database itself. The
placement of data can directly affect the performance of the operation you
are trying to perform, be it a query, load, import, export or backup. The overall
objective is to spread the database effectively across as many disks as
possible to try and minimize I/O wait. It is essential that the database
administrator understands the different advantages and disadvantages of
choosing a particular data placement strategy in order to achieve this goal.

In this chapter we will discuss the following concepts:

• Disk layout
• Mirroring, striping, and RAID devices
• Table space design
• Buffer pool layout
• Database logs

We will explain how each of these concepts effects database performance,
and provide helpful information that a database administrator can use to
physically design a new database or improve the physical design of an
existing database.

We will not explain basic concepts and tasks, such as creating a database, a
table space, or a buffer pool. Rather, we will provide information that can be
used to help understand how creating these components in certain ways can
affect performance.

For information on the commands to perform these tasks, please refer to the
DB2 UDB Administration Guide: Implementation, SC09-2944 or the DB2 UDB
SQL Reference, SC09-2974.

3.1 Disk layout

Deciding how to manage disk storage when working with any relational
database is one of the most important decisions a database administrator has
to make.

How the data is physically laid out across the disks affects performance, as
we explain in the following sections.
© Copyright IBM Corp. 2000 31

3.1.1 Data placement
When choosing a physical disk layout, a number of factors come into play:

Workload considerations
The type of workload your database is tasked to perform needs to be taken
into account when considering how the physical database layout may affect
the performance of the database. The primary function of each workload type
should give you some indiction of how to lay out the database.

For example, if the database is part of a Web application, then typically its
behavior will be On-line Transaction Processing (OLTP). There will be a great
deal of concurrent activity, such as large numbers of sessions active, simple
SQL statements to process, and single row updates. Also, there will be a
requirement to perform these tasks in seconds.

If the database is part of a Decision Support System (DSS), there will be
small numbers of large and complex query statements, fewer transactions
updating records as compared to transactions reading records, and many
sequential I/O operations.

This information gives the database administrator some ideas which can be
used to aid in the physical design of a database which will be well-suited to
that type of workload.

Available disk space
You need to consider whether you have enough disk space to support the raw
data. Also, remember that additional space is required for indexes, temporary
space, secondary log files, and paging space. The total amount of required
disk space for all of these is, in most cases, three to four times the raw data;
this needs to be calculated before you even consider allowances for concepts
such as mirroring. If you then wish to introduce mirroring, eight times the raw
data would be a good estimate. RAID 5 requirements are somewhere
between these two situations.

Number of disks required
It is important also to take into account the number of disks required to
achieve a balanced system. For example, a system made up of many small
disks can be exposed to potential problems, such as those caused by system
bus contention; such a system may also produce increased system
administration overhead. The opposite of this, having too few large disks, can
also cause I/O bottlenecks. In an average system, a good balance would be a
minimum of six to ten disks per CPU for optimal performance.
32 DB2 UDB V7.1 Performance Tuning Guide

In summary, the basic goal is to design a system so that no one disk or set of
disks becomes a performance bottleneck.

Running out of disk space
Reaching your disk storage limit can affect overall performance and, in the
worst case, the operation of the database (if you run out of log space).

3.1.2 Log placement
Factors affecting logging performance such as log file size, number of logs
and type of containers used for logs will be discussed in 3.5, “Database logs”
on page 78. However before any log files ever exist the database
administrator needs to decide on two main factors:

On which disks are the logs to be placed?
Due to the importance of the log files, it is recommended that these should
ALWAYS reside on their own physical disk(s), separate from the rest of the
database objects. The disks ideally should be dedicated to DB2 logging to
avoid the possibility of any other processes accessing or writing to these
disks.

Another important factor is the location of the logical volume on the disk itself.
In most cases, the general advice would be to place the logical volume as
close to the center of the disk as possible. However, with the log filesystem or
raw logical volumes, this is NOT the case. The typical activity of the DB2
logger process, which writes to the log files, will be a large number of
sequential reads and writes. For this reason, when creating the logical
volume, ideal placement is on the outer edge of the disk where there are
more data blocks per track.

Availability
Irrespective of the type of logging you choose, whether it be Circular Logging
or Archival Logging, the availability of the physical disks is crucial to the
database. For this reason, it is strongly recommended that you protect the log
against single disk failures by using RAID 1 (mirroring the log devices), or by
storing log files on a RAID 5 array.

You might wonder why a RAID 5 array, which incurs the write penalty, is
suitable for log files. We will discuss RAID disks and write penalty in 3.2,
“Mirroring, striping, and using RAID devices” on page 35.
Chapter 3. Data storage management for performance 33

3.1.3 Data availability and performance
In these days of e-business, with DB2 databases commonly being used to
support Web applications, 24x7 availability is an important consideration. It is
worth remembering that in most cases, increasing availability is a trade-off
against a potential reduction in performance. The most common solutions
implemented today are RAID 5, discussed in 3.2, “Mirroring, striping, and
using RAID devices” on page 35, and data mirroring.

It is also worth mentioning that in an attempt to improve I/O performance to
frequently accessed tables, many customers choose to implement data
striping across logical volumes. Mirroring and striping will also be covered in
3.2, “Mirroring, striping, and using RAID devices” on page 35. Although
obviously, both mirroring and striping can be done outside of the RAID array
by the operating system’s logical volume manager, the concepts are the
same.

3.1.4 General performance recommendations
The following are general performance considerations to bear in mind when
creating logical volumes on AIX:

• Try to spread heavily-accessed logical volumes across as many physical
volumes as possible to enable parallel access.

• Try to create your logical volumes of sufficient size for your data; this will
avoid fragmentation if the logical volumes have to be increased later.

• Sequential write-intensive logical volumes are best placed on the outer
edge of the physical volumes. Logical volume placement can be controlled
during its creation.

• Sequential read-intensive logical volumes are best placed in the center of
the physical volumes.

• Set inter-policy to maximum to spread each logical volume across as
many physical volumes as possible.

• Set write verify to OFF; see 3.2.3, “AIX logical volume parameters” on
page 40.

Some further considerations for mirroring and striping are also discussed in
3.3, “Table spaces: performance considerations” on page 52

Note
34 DB2 UDB V7.1 Performance Tuning Guide

policy configured using the AIX LVM options, which are PARALLEL or
SEQUENTIAL.

Although mirroring can improve the read performance, the penalty is write
performance. For optimal performance, we recommend the use of the Parallel
scheduling policy. See 3.2.3, “AIX logical volume parameters” on page 40 for
more details on scheduling policy.

• For more detailed information on the AIX Logical Volume Manager, refer to
your AIX documentation.

3.2.1.3 RAID 5
In a RAID 5 array, data and parity are spread across all disks. For example, in
a 5+P RAID 5 array, six disks are used for both parity and data. In this
example, five-sixths of the available space is used for data and one-sixth is
used for parity.

Because of the parity data used by RAID 5, each write to the array will result
in four I/O operations; this is known as the RAID 5 write penalty:

1. Read old data
2. Read old parity
3. Write new data
4. Write new parity

Fast Write Cache (FWC), which exists on some RAID adapters, can reduce
the effects of this write penalty. RAID 5 is commonly chosen because it
provides an extremely good price/performance ratio combined with good
availability. By default, FWC will be OFF; see 3.2.4, “SSA RAID array
parameters” on page 42 for more information on checking and setting FWC.

Using the Enterprise Storage Server (ESS), which has a large cache, can
significantly decrease the effects of the write penalty. See 3.2.9, “Using
Enterprise Storage Server” on page 50 for more information on ESS.

3.2.1.4 RAID 10
• Sometimes called RAID 0+1, this RAID level provides better data

availability at the cost of extra disks. Consider a striped logical volume,
where failure of one disk renders the entire logical volume unusable. RAID

In AIX, when mirroring data, ONLY the logical volumes are mirrored, not
the physical disk. Mirroring is not a tool to provide a disk copy

Note
36 DB2 UDB V7.1 Performance Tuning Guide

10 provides the ability to mirror the striped logical volumes to prevent this.
When data is written to the disks, the first data stripe is data and the
subsequent stripe copies (maximum of three copies, including first copy)
are the mirrors and are written to different physical volumes.

3.2.2 Performance considerations
If you are going to be using striping, mirroring or RAID, remember that each
of these concepts has its own set of advantages and disadvantages to be
considered, as well as tips which can be used to help obtain optimal
performance. In this section, we will provide an overview of these points.

3.2.2.1 Striping
If you are using striping, the following are some general performance
considerations:

• Set max_coalesce equal to or a multiple of the stripe unit size, but not
smaller. See 3.2.4, “SSA RAID array parameters” on page 42.

• Set minpgahead to 2 and maxpgahead to 16 * number of disk drives, using the
AIX vmtune command. Refer to the AIX documentation for more details on
these parameters.

• Modify maxfree to accommodate the change in maxpgahead so that the
difference between minfree and maxfree is maxpgahead.

• If the striped logical volumes are raw logical volumes, consider increasing
the lvm_bufcnt parameter of the AIX vmtune command; see 3.2.3, “AIX
logical volume parameters” on page 40 for more details on this.

• If you create a logical volume for a DB2 container which will be intensively
used and updated, try NOT to put it on a disk with your striped logical
volumes.

AIX 4.3.3 introduces the ability to create logical volumes outside of RAID
which are mirrored and striped, known as RAID 0+1 or RAID 10.

Note
Chapter 3. Data storage management for performance 37

3.2.2.2 Mirroring
The following are performance considerations for mirroring:

• Be aware that when you use mirroring, every write performs multiple
writes, this will affect performance. When mirroring, set the scheduling
policy to parallel and allocation policy to strict, as discussed in 3.2.3,
“AIX logical volume parameters” on page 40.

• Mirrored logical volumes which are frequently accessed should be placed
on the outer edge of the physical volume, because the mirror write
consistency cache resides there and this is updated frequently. Please
refer to the 3.2.3.3, “Mirror write consistency” on page 41 for more details.

3.2.2.3 RAID 5 versus LVM mirroring
SSA RAID 5 or LVM mirroring are the most widely implemented data
availability solutions used in most DB2 systems. The main reason for this is
that both solutions provide a robust and reliable data protection solution for a
reasonable price/performance ratio. To decide between RAID 5 and LVM
mirroring, consider these factors:

RAID 5:
Read performance is affected by number of disks within the array. With a
greater number of disks, the I/O throughput increases, because more
requests can be processed in parallel (up to the RAID adapter limit).

If your database application is very write-intensive, then the write penalty
associated with RAID 5 will become a factor. RAID adapters possessing the
fast write cache feature can help minimize that penalty. If your application
generates mostly read operations, then a RAID 5 array will give performance
similar to a mirrored system; to do this, the array will need to use enough
disks to provide adequate parallel reads.

The vmtune parameters maxpgahead and maxpgahead only affect I/O which
goes through the AIX LVM; raw device I/O is not affected.

To use vmtune, install the AIX fileset bos.adt.samples, and the executable
will be placed in the /usr/samples/kernel/ directory

Note
38 DB2 UDB V7.1 Performance Tuning Guide

Mirroring:
The main factor with a mirrored system is the number of individual disks
required to store the data. For example, data stored on a RAID array
consisting of 11 disks (10 parallel + 1 parity) would require 20 disks for a
mirrored solution.

3.2.2.4 Log files on a RAID 5 array
Although a RAID 5 array may incur the write penalty, when you have FWC or
use the Enterprise Storage Server (ESS), we recommend that you use a
RAID 5 array to store log files rather than using mirrored disks. The benefit
you can obtain from a using a RAID array is enough to justify the overhead
due to writing the parity information, for the following reasons:

• The typical activity on the log files is a large number of sequential reads
and writes; therefore, all of the disks in the RAID array can work in parallel
and provide a higher bandwidth than mirrored disks can provide.

• With RAID-5, the amount of data to be stored in the disk storage is smaller
than with mirrored disks, which means less utilization of the disk and
memory buses.

• When a sequential write occurs, as in the case of DB2 logging activity, and
you have FWC (or ESS), the parity information for each set of chunks can
be calculated without reading old parity data from the disk in many cases,
therefore the effects of the write penalty are not significant. This is
because all the required data (chunks) for the calculation of the parity
information can be kept in the cache. Once a set of chunks has been put
in the cache by the sequential write, the parity information is calculated
and destaged to the disk storage with data chunks.

If you do not have FWC, mirrored disks would be a better choice for log files
than a RAID 5 array.

3.2.2.5 What about RAID 10?
RAID 10 provides excellent performance with excellent availability. However,
there is one main drawback with RAID 10, and that is cost. It suffers from the
same disadvantage as RAID 1 (mirroring) in that the total number of disks
required to hold the raw data will be doubled due to the fact that you are
mirroring. For this reason, if overall cost is a concern, most people will opt for
RAID 5; if cost is not a concern and you are using AIX 4.3.3 or later, then
RAID 10 should be strongly considered where performance is the main goal.
Tests have shown that RAID 10, or striping and mirroring as it is also known,
provides close to the read/write performance of ordinary striped filesystems,
with little additional overhead incurred due to the mirroring.
Chapter 3. Data storage management for performance 39

3.2.3 AIX logical volume parameters
The AIX Logical Volume Manager (LVM) has many different components and
features which affect performance. It would be impossible to cover them all in
this book, but we will look at the main parameters for logical volumes which
can influence the performance of your database. If you require detailed
information on the AIX LVM then refer to the AIX Documentation or refer to
the IBM Redbook Web site http://www.redbooks.ibm.com and search for the
following books, you can view these on-line or order a hardcopy.

• AIX Logical Volume Manager, From A to Z: Introduction and Concepts,
SG24-5432-00

• AIX Logical Volume Manager from A to Z: Troubleshooting and
Commands, SG24-5433-00

3.2.3.1 Write scheduling policy
Earlier in this chapter we suggested that when using mirrored logical volumes
the scheduling policy should be set to Parallel. The reason for this is that
when performing a write operation with the Sequential policy enabled, the
writes are performed sequentially, starting with the primary copy, and the
write is not considered complete until the last copy is written. With the
Parallel policy, however, all copies are treated equally and written in parallel
so the write completion time is only constrained by the time it takes the
slowest disk to perform the write.

To check the scheduling policy, you can use SMIT or the lslv command. The
attribute to look for is SCHED POLICY, as shown in Figure 10.

Figure 10. lslv output

When creating a mirrored logical volume using the mklv command, the -d p

flag and attribute will influence the scheduling policy.
40 DB2 UDB V7.1 Performance Tuning Guide

In Figure 10, it can also be seen that we have WRITE VERIFY and MIRROR WRITE

CONSISTENCY turned OFF. In both cases, this has been done to maximize the
performance of the mirrored disks, but there are disadvantages to disabling
each, which we will now look at.

3.2.3.2 Write verify
If WRITE VERIFY is turned ON, then for every write that is performed, a read will
be done to verify that the write was successful. This obviously impacts the
write performance of that logical volume. If set to OFF, then writes are not
verified by the AIX LVM; this is the default setting.

3.2.3.3 Mirror write consistency
If MIRROR WRITE CONSISTENCY is turned ON, Mirror Write Consistency (MWC) will
ensure that the data is consistent across ALL mirrored copies. If the system
crashes or is not shut down properly, then MWC will identify which copies are
inconsistent by marking them as "stale". When the system comes back up, if
MWC is ON, then AIX will read the MWC log and make all copies consistent
again.

From DB2’s point of view, having MWC on for the log disks, for example,
would prove very costly, as every write would consist of two operations, one
to write the data and one to update the MWC cache record. Using hardware
write cache such as that contained on certain SSA adapters can minimize this
impact. If you do decide to disable MWC, then it will be necessary to put in
place a procedure to re-synchronize the mirror copies in the event of a
system crash. The volume groups containing such logical volumes would
need to have their autovaryon capability disabled, and then after the system
comes back up, each mirrored logical volume would need to be
re-synchronized by running the following command:

syncvg -f -l <logical volume name>

If you are going to create such logical volumes and leave MWC set to ON, then
write performance will be affected, so try to locate these logical volumes on
the outer edges of the disks, as this is where the MWC cache is located. This
will help minimize disk head movements when performing writes.

For more information on volume group attributes and selecting where on the
disks to create logical volumes, refer to the AIX Commands Reference,
SBOF-1851-00. Commands to look at are mkvg and chvg (for existing volume
groups); mklv and chlv (for existing logical volumes).
Chapter 3. Data storage management for performance 41

3.2.3.4 LVM_BUFCNT parameter
On AIX, when using applications that issue large raw I/O reads/writes which
bypass the filesystem, as DB2 does when using DMS raw logical volumes,
then we recommend that you increase the value for this parameter using the
AIX vmtune command. The default for this is 9, which represents the number
of LVM buffers allocated for raw physical I/O. In most cases, if you perform
large physical I/Os to fast devices, then increasing this parameter should
bring performance gains. This can be done using the -u flag of the AIX vmtune

command.

3.2.4 SSA RAID array parameters
A common solution for database disk subsystems is RAID. On the AIX
operating system, there are some tunable parameters which can improve the
performance of your RAID array. We will now look at what these parameters
are, how to check the current values you are using, and then how to change
them if required.

3.2.4.1 Checking adapter / disk parameters
When using SSA RAID arrays, it is worth checking not only the attributes of
the array itself, but also the extent and prefetch sizes you have used for table
space containers defined on the array.

We will now use an example to demonstrate how to check these values and
make recommendations on how SSA RAID array parameters can effect table
space configuration decisions.

First we need to know what the RAID logical disks are on our system. To do
this, we can run the following command — we can see here that on this
system we only have one logical SSA RAID disk, hdisk4 (the logical disk will
be made up of multiple physical disks).

MWC will only ensure data consistency, NOT data integrity; this is the role
of the database.

Note

lsdev -C -t hdisk -c disk -s ssar -H
name status location description
hdisk4 Available 10-70-L SSA Logical Disk Drive
42 DB2 UDB V7.1 Performance Tuning Guide

To check the attributes we have set for this logical disk, we can use the
command line as shown in Figure 11. The parameters that we are interested
in checking are max_coalesce and queue_depth.

• max_coalesce
Specifies the maximum number of bytes that the SSA disk device driver
attempts to transfer to or from an SSA logical disk in one operation. For an
N+P array, set this to 64K*N (0xN0000) (for example, 0x70000 for a 7+P
array).

Currently it is recommended that this value should not exceed 0xFF000,
even though the SSA device driver allows values up to 2 MB. Check your
SSA adapter documentation for the most up-to-date information.

• queue_depth
Specifies the maximum number of commands that the SSA disk device
driver dispatches for a single disk drive for an hdisk. For an N+P array, set
to 2*N or even 3*N. By altering this value, we maximize the chance of
reading data from each component of the array in parallel.

Figure 11. SSA logical disk attributes

To set this value, use the following command for the logical SSA disk you
want to change. The chdev command can also be used to alter queue_depth.

chdev -l hdisk# -a max_coalesce=(0x10000 * N)

Using Figure 11 as an example of a 3+P array, we would set the max_coalesce

value to 0x30000 and queue_depth to 2 * N = 6.

Make sure any volume groups defined on the array are varied off before
making changes to the above parameters.

Note
Chapter 3. Data storage management for performance 43

This operation can also be performed using SMIT; the fast path for this is:

smitty chgssardsk

You will now be presented with a screen similar to Figure 12, from which you
can select the SSA Logical Disk name:

Figure 12. Select SSA logical disk

We now see a screen as in Figure 13 below. Here you can see the
max_coalesce and queue_depth settings:

Figure 13. Changing ssa logical disk attributes

As was stated earlier, you should set max_coalesce to 64 KB x N. The default
is 0x20000, which corresponds to two 64 KB strips (and applies to a 2+P
array).

For a 9+P array of 10 disks, set the value to 0x90000 which is 9x64KB.
44 DB2 UDB V7.1 Performance Tuning Guide

For an 11+P array of 12 disks, this equates to 11x64KB (11 * 0x10000) =
0xb0000.

This is documented in the manual, Advanced Serial RAID Adapters User
Guide and Maintenance Information, SA33-3285-01. This manual can be
downloaded in PDF format from the URL:

http://www.hursley.ibm.com/~ssa/docs/index.html

3.2.4.2 Fast write cache (FWC)
Fast write cache (FWC) is an optional nonvolatile cache that provides
redundancy with the standard adapter cache. The FWC tracks writes that
have not been committed to disk and can significantly improve the response
time for write operations.

Fast write cache typically provides significant advantages in specialized
workloads, for example, copying a database onto a new set of disks. If the
fast write cache is spread over multiple adapters, this can multiply the benefit.

With SSA, the fast write cache can be used if you have a RAID array
configured, or even if you are just using it as JBOD (just a bunch of disks).

To check if you have fast write cache modules installed, you will need to look
at the vital product data (VPD) for your adapters. This can be checked using
the SMIT ssafastw fast path, or from the command line as shown in Figure 14:

Figure 14. Using the lscfg command to show adapter information

Using the AIX command, lscfg -vl <adapter_name>, we can view the adapter
information as shown above. From this we can see that the attribute Device
Specific (Z1) tells us if the adapter contains a plugable fast write cache
Chapter 3. Data storage management for performance 45

module; if we have such a module installed, then the number is the cache
size in megabytes. As you can see in our example, there is NO fast write
cache installed for this adapter.

You can also see, in Fig. 15 on page 47, how the ssaraid command can be
used to show the status of the fast write cache attribute.

When enabling the fast write cache for a device, in order for the change to
take effect, you must ensure that:

• All filesystems associated with the volume group the disk belongs to must
be unmounted.

• Once filesystems are unmounted, the volume group must be varied off.

If you do have a fast write cache module installed, then to turn fast write
cache on, you can use SMIT. The fast path command would be:

smitty ssafastw

From the command line, this can be done by running the following command:

ssaraid -H -l ssa0 -n hdisk4 -a fastwrite=yes

In this example, we are enabling the fast write cache for the SSA logical disk,
hdisk4, which is attached to the ssa0 adapter. Once the change has been
made, the volume group can be varied back on again, and the filesystems
can be mounted.

3.2.5 Effects on table space configuration
When using SSA RAID devices, the physical disks will be striped at the
hardware level beneath the database. If you are using DMS raw containers,
then this striping will affect the values you use for extent size and prefetch
size for the table space.

We would recommend that for any table space using a RAID device, you
should define only one container. The reason is that, if you define multiple
containers, then the data will be striped, not only across the DB2 containers,

The entry, Device Specific (Z0) represents the size, in megabytes, of the
installed synchronous dynamic random access memory (SDRAM)
modules. This is NOT fast write cache.

Note
46 DB2 UDB V7.1 Performance Tuning Guide

but effectively also striped at the hardware level by the RAID device. This
gives us striping on top of striping, which is not desirable.

The SSA RAID logical disk attribute strip_size is the parameter that you
need to look at. The strip_size parameter is set when the array is created.
Once the array is created, you can query the value used for strip_size as
shown in Figure 15; the value used for this parameter is in 512 byte blocks,
not KB:

Figure 15. Using ssaraid command to show strip_size attribute

In Figure 15, you can see that strip_size is set to 128 for this particular SSA
RAID logical disk. This value represents 64 KB (128 * 512 byte blocks).

Because the SSA RAID array is striped in this way, it is recommended that
you set the following DB2 registry variable BEFORE creating any table space
containers on the array.

3.2.6 The DB2_STRIPED_CONTAINERS variable
A striped container is a DMS raw container that is mapped to a device which
implements data striping beneath the database (at the file system or disk
subsystem level). Set the variable as follows; this command would be run as
the DB2 instance owner:

db2set DB2_STRIPED_CONTAINERS=ON
Chapter 3. Data storage management for performance 47

The reason we set this variable is that RAID does its own striping. It is
important to ensure that DB2’s containers line up with the RAID array’s stripe
units. To achieve this goal, we do two things:

• Use an extent size that is equal to, or a multiple of the RAID array’s stripe
unit. Remember that the stripe unit size returned by the ssaraid command
is in 512 KB blocks. For example, when the strip_size returned by the
ssaraid command is 128, the strip unit size is 64 KB, and it is
recommended to use 64 KB or a multiple of 64 KB for the extent size.

• Set the DB2_STRIPED_CONTAINERS=ON registry variable. Because all DB2
containers contain a one-page tag, the extents will not line up with the
RAID stripe units which could result in an increase in I/O requests. By
setting this variable to ON and using DMS raw containers, each container
tag is allocated one complete extent. This allows the stripe units and
extents to line up correctly, but at the cost of a one-extent overhead. A
db2stop and db2start must be done in order for this variable to take effect.

The reason this variable does not affect DMS file containers is that the pages
allocated for the DMS file container are still allocated by the filesystem, so we
cannot guarantee that the pages in the container will be contiguous across
the disk(s). With raw devices, DB2 controls this and allocates the pages
contiguously.

3.2.6.1 Setting up a table space on a RAID device
First we would follow the guidelines above for configuring the RAID array. We
would then set the DB2_STRIPED_CONTAINERS registry variable to ON and follow
that with a db2stop and db2start.

The next stage is to create the raw logical volume on the RAID array. Let us
assume the logical volume is called tbslv. We now connect to the database
and create the table space using a command like that shown below.

CREATE TABLESPACE TBS1
MANAGED BY DATABASE USING
(DEVICE '/dev/rtbs1lv' 2000) PAGESIZE 8K
EXTENTSIZE 8
PREFETCHSIZE 24

A relatively small RAID array configuration is used to illustrate these points:

Using an array = 3 + P (3 parallel plus one parity) and a strip size = 64k, we
can say that the above CREATE TABLESPACE command will give us the following
results:
48 DB2 UDB V7.1 Performance Tuning Guide

• Using an EXTENTSIZE of 8 pages and a PAGESIZE of 8K, each extent will span
1 drive. The value used for EXTENTSIZE should always be equal to or a
multiple of the RAID stripe size.

• Using a PREFETCHSIZE of 24 pages, each prefetch done will utilize the 3
parallel disks. The calculation is strip size * N / PAGESIZE which equates,
in this example, to 64KB * 3 / 8 = 24. We recommend that the PREFETCHSIZE

is the RAID stripe size multiplied by the number of parallel disk drives (do
not include parity disk) and also a multiple of the EXTENTSIZE. If you wish to
increase the PREFETCHSIZE, then you also need to consider increasing the
NUM_IOSERVERS database configuration parameter to a least PREFETCHSIZE /

EXTENTSIZE.

If the database’s main workload requires good sequential I/O performance,
such as a DSS workload, then the PREFETCHSIZE becomes even more
important.

In our example, we have been using DMS raw containers. When this type of
container is used, the operating system does not do ANY prefetching or
caching, so ensure that you use an adequate PREFECTHSIZE and enable the
table space for parallel I/O.

3.2.7 The DB2_PARALLEL_IO variable
So far, we have looked at the use of the DB2 registry variable
DB2_STRIPED_CONTAINERS and its use with containers defined on RAID devices.

Another important registry variable is DB2_PARALLEL_IO. We mentioned earlier
that, for table spaces that exist on RAID devices, you should only create one
container. Obviously, the array itself is made up of more than one physical
disk, so it is recommended that for this type of table space, you should enable
this registry variable. When you specify the table space’s ID to the
DB2_PARALLEL_IO registry variable, the database is able to issue parallel I/O
requests to that table space, even though it consists of a single container.
DB2 achieves this by enabling multiple prefetchers simultaneously for the
table space which results in improved utilization of the underlying physical
drives.

You can enable parallel I/O for every table spaces using the DB2_PARALLEL_IO

variable, as shown in the following example:

db2set DB2_PARALLEL_IO=*

You can also enable parallel I/O for a list of table spaces IDs
(comma-separated) as in the following example:
Chapter 3. Data storage management for performance 49

db2set DB2_PARALLEL_IO=1,2,4

A list of table space IDs can be obtained by running the LIST TABLESPACES
command when connected to your database, or you could run this command:

SELECT TBSPACE,TBSPACEID FROM SYSCAT.TABLESPACES

After setting the DB2_PARALLEL_IO registry variable, you must run db2stop and
then db2start for the change to take effect.

DB2_PARALLEL_IO should also be enabled for striped containers when
PREFETCHSIZE > EXTENTSIZE

3.2.8 Multi-page file allocation
With SMS table spaces, when you are inserting or updating a table in the
table space, the file associated with the SMS container is extended one page
at a time, which can lead to a performance degradation if you are inserting
large numbers of rows.

For SMS, turn on multipage_alloc to improve insert performance; note that
this is a database configuration parameter that controls whether pages are
allocated by page (default) or by extent. To set this, you must use the
db2empfa tool to turn multipage_alloc ON, as follows:

db2empfa <database-alias>

This parameter has NO effect on DMS table spaces (as space is
pre-allocated) or temporary table spaces (as all required pages are allocated
when temporary tables are created).

3.2.9 Using Enterprise Storage Server
With the introduction of the Enterprise Storage Server (ESS), it is possible
that this may be the main component of some DB2 disk subsystems.

Also refer to the table space parameters OVERHEAD and TRANSFERRATE

discussed in 3.3, “Table spaces: performance considerations” on page 52.

Note

Once this parameter has been set to YES for a particular database, it
cannot be set back to NO.

Note
50 DB2 UDB V7.1 Performance Tuning Guide

If you are using such hardware, then you may be wondering if there is
anything specific you need to look at from a DB2 configuration point of view.

One recommendation would be to look at the value being used for the
NUM_IOSERVERS parameter. We would recommend that a good starting value
would be to set the NUM_IOSERVERS equal to the number of the ESS's ranks.

Using that as a starting point, NUM_IOSERVERS can then be increased, but some
tests have shown that, in some cases, this does not provide any performance
improvements; in fact, there may be some small overhead in going for a
larger value. This will ultimately be up to the database administrator to test,
as all environments are different, and the value used will depend on factors
such as workload type, for example, DSS or OLTP.

DB2_PARALLEL_IO and DB2_STRIPED_CONTAINERS should also be set when using
ESS units.

If you use your ESS unit, which has a large cache, with a system which also
has a large amount of physical memory dedicated to DB2 (such as large
buffer pools) then the NUM_IOCLEANERS value need not be very large. Using the
number of CPUs in the system would be a good starting point.

It is also recommended that if your database uses mainly SMS table spaces,
then having more containers per ranks of ESS gives better performance.

For example, suppose you create a filesystem on one ESS rank, then define
it as a container for one of your SMS table spaces. Doing this could cause a
performance degradation due to i-node lock contention in the operating
system. By defining multiple containers for the SMS table space, you would
reduce the i-node lock contention. Some tests have shown that allocating four
containers per ESS RAID array achieves very good results.

3.2.9.1 DMS considerations
In an ESS system, each RAID array (ESS ranks) can be defined as one
logical disk or multiple logical disks. AIX sees each logical disk as an hdisk.
When creating logical volumes in AIX for use as DMS device containers, the
AIX Logical Volume Manager (LVM) will allow you to spread the logical

One ESS rank is a set of 7 Raid-5 disks (a 6+P array). Normally you will
have two spare disks per SSA loop, so the array may be known as a
6+P+S. In ESS the spare disk is able to "float" between different arrays.

Note
Chapter 3. Data storage management for performance 51

volume(s) across multiple hdisks, and in a non-RAID environment, we would
normally do this. However, if you are spreading the logical volume across an
array which you have split up into multiple logical disks, then you will not get
any performance advantage over a setup where you had defined just one
logical disk for the array. The reason for this is that all I/O activity still goes to
the same RAID array.

Normally, to maximize the throughput of an ESS system, you would balance
your workload across as many ESS ranks (RAID5 arrays) as possible. By
defining logical volumes across multiple ESS logical disks on separate RAID5
arrays, you could achieve this. However, DB2 attempts to balance load
across table space containers, so if each container is a DMS device
container, then try to define one container per RAID5 array. For this
configuration we would require one logical disk (AIX hdisk) per array. By
having one logical disk per array, we would not need to use the AIX LVM to
create the logical volume across multiple disks in the same array.

3.3 Table spaces: performance considerations

Table spaces in DB2 can be defined as either of the following two types,
which we summarize in the following sections.

3.3.1 SMS table spaces
Containers are operating system directories; you can easily increase table
space capacity by enlarging the underlying operating system file system.
Data is striped across the container by extent; disk space is allocated on
demand one page at a time (by default).

With SMS table spaces, data objects (table data, indexes, LONG
VARCHARs, and LOBs) are located by operating system file name.

We suggest that each container (directory) be associated with a different file
system; otherwise, table space capacity will be limited to that of a single file
system.

Ensure that containers have equal capacity, as excess capacity in larger
containers is not exploited.

These are some advantages of using SMS table spaces:

• Space is not allocated until required.

• Initial database creation may be simpler (no DMS container definitions
required).
52 DB2 UDB V7.1 Performance Tuning Guide

3.3.2 DMS table spaces
Containers are either operating system files or raw devices. We recommend
that, where possible, you should associate each container with a different
disk or disks, as this enables parallel I/O, and gives the opportunity for larger
table space capacity.

With DMS, you can increase table space capacity via ALTER TABLESPACE ADD

CONTAINER, or use a new feature in DB2 v7.1 — the addition of two new
clauses for the ALTER TABLESPACE statement. These are RESIZE and EXTEND.
These options will be discussed in 3.3.9.2, “Container sizes” on page 68.

When using DMS device containers in a table space, you need to understand
the following performance considerations:

• File system caching for DMS file containers is performed by the operating
system in the filesystem cache; on AIX this is the JFS cache.

• File system caching for DMS device containers (raw logical volumes for
example) is NOT done by the operating system.

In DMS table spaces data, is striped across the container(s) by extent, as in
Figure 16. Note that extents are mapped in a round-robin fashion, and extents
for different objects (table 1 and table 2) need not be contiguous.

Figure 16. DMS table space structure

00

2

4

6

8

0 1

3

5
7 11

Extents Striped
across containers

Table2

Table1
Chapter 3. Data storage management for performance 53

Here are some advantages of using DMS table spaces:

• Containers can be added and extended.

• Large tables can be split up by data type (LOBs, indexes, data) across
multiple table spaces.

• DMS device placements on disk can be controlled using the logical
volume manager (outer edge, middle)

• DMS, in most situations, will give better performance than SMS.

3.3.3 SMS versus DMS
In some situations, it can be difficult to decide whether to use SMS table
spaces or DMS table spaces, as there are a number of different factors to
consider. We strongly recommend that, where possible, you should use DMS
table spaces with device (raw logical volume) containers if performance is
your main priority. The database can do a much better job than the filesystem
when it comes to managing its own disk blocks. However, in this section of
the chapter we will discuss situations where either SMS or DMS file
containers may be a reasonable and sometimes more suitable alternative.

When using DMS raw devices, DB2 will ensure that pages are placed
contiguously on the disk drives; with SMS containers, this is not the case, as
the filesystem decides where to locate the pages (this can also apply to DMS
file containers). Contiguous placement of pages is important, as pages make
up DB2 extents. Contiguous pages will speed up operations like table scans.

3.3.4 Table space categories
In DB2 we have seen that table spaces can be either SMS or DMS. We can
also break down table spaces into the following categories which represent
the data type for a table space.

3.3.4.1 Regular table spaces
You can think of a regular table space as a table space for containing user
data; the default table space for this data type is called USERSPACE1. Index data
is also stored in regular table spaces, as are the system catalog tables. The
default table space for system catalogs is called SYSCATSPACE. Both USERSPACE1

and SYSCATSPACE are created when the CREATE DATABASE command is run, and
both are created as SMS type table spaces by default.

You can, of course, drop USERSPACE1 if you wish, as its use for data is optional.
Mostly, you will create additional table spaces for your data. However, the
name SYSCATSPACE must be used for the table space which is holding the
system catalogs.
54 DB2 UDB V7.1 Performance Tuning Guide

3.3.4.2 Long table spaces
Any tables which contain long field data or long object data will occupy this
type of table space.

When any application has a need to access data from a long table space
(whether the data be LOBs, LONG VARCHAR, or LONG VARGRAPHIC), the database
manager cannot use the buffer pools to cache the data. Therefore, every time
a page is requested, the database manager must request it from disk (see
point in this section on DMS file containers to help with this).

Long table spaces must be DMS type table spaces. Use of long table spaces
is optional, as the data type can reside in regular table spaces.

From a performance point of view, as LONG data is NOT stored in the buffer
pools, then you can use DMS file containers instead of raw devices. The
reason for this is that by using the file containers, you will benefit from the
operating system’s filesystem cache.

3.3.4.3 System temporary table spaces
System temporary table spaces are used during SQL operations for internal
temporary tables, for sorts, to store intermediate results, table
reorganizations, and other transient data.

All databases in DB2 must have at least one system temporary table space.
The default, called TEMPSPACE1, is created by default as an SMS table space.

3.3.4.4 User temporary table spaces
Introduced with DB2 v7.1 is a new table space type called user temporary
table spaces. This table space type was introduced to support another new
feature in this release of DB2 which is discussed in 4.1.3.6, “Declared
temporary tables” on page 101. Therefore, the main use of this table space
type is to store the declared temporary tables once a user or application has
defined such a table.

3.3.5 Choosing table space types for data tables
When deciding what type of table space to create to provide optimal
performance (for example, to maximize I/O throughput), you need to be
familiar with the following concepts before making your decision:

• Big block reads, a read where several pages (normally an extent are
retrieved in a single request.

• Prefetching, reading pages in advance, in an attempt to reduce query
response times.
Chapter 3. Data storage management for performance 55

• Page cleaning, the writing of modified buffer pool pages to disk to make
room for a new page to be read in.

DB2 tries to perform big-block reads whenever possible to maximize the
amount of data read in one operation. When using DMS device containers the
data will in most cases be contiguous on the disk, which reduces seek time
and latency. When using SMS or DMS file containers, then the operating
system’s filesystem may have broken the files up and stored the different
parts of the file in different locations on the disk(s) which means the file has
become fragmented. This obviously gives a read performance degradation.

Prefetching is discussed later in this chapter.

3.3.5.1 Data tables
Raw data and indexes are classed as regular user data. To maximize
performance, choose DMS with raw containers. SMS has always been
thought of as giving a lower level of performance but superior (simpler)
system administration. However, due to a number of enhancements to DMS
with DB2 v7.1, this argument is weakening slightly (features like the DMS
table space resize option affect this).

As we have said already, raw containers will, in nearly all cases, outperform
file containers because the database manager can bypass the operating
system’s file system and also avoid unnecessary double buffering.

Again, LOB or LONG VARCHAR data benefits from the use SMS or DMS table
spaces with FILE containers, as they benefit from the operating system’s
filesystem cache. LOB and LONG VARCHAR are not buffered in DB2's buffer pools,
as they use direct I/O. Any memory allocated to long table spaces should be
kept to a minimum, or alternatively, just use the default buffer pool
IBMDEFAULTBP.

3.3.5.2 Temporary table spaces
We suggest that for nearly all systems, SMS is the right table space type to
choose for both system and user temporary table spaces.

The main advantage of using SMS for temporary table spaces is that data
stored in temporary tables is mostly transient data (for example batch work).
By using SMS you will only allocate disk space as and when required, unlike
DMS, which will allocate all specified space when the table space is created.

If you have table spaces utilizing different page sizes, then our suggestion
would be to create one temporary table space with a page size equal to that
of the majority of your data tables (see note on reorg). When selecting
56 DB2 UDB V7.1 Performance Tuning Guide

temporary table spaces, DB2 ignores page sizes which are too small to
accommodate the operation which requires temporary space. For this reason
you will need to ensure that the page size of your temporary table space(s)
can accommodate the row lengths and column used in your database; see
Table 2 on page 64 for a list of page size row and column limits.

The reason we suggest only having one temporary table space for a given
page size is because when you have multiple temporary table spaces using
same page sizes, the DB2 optimizer will generally choose a temporary table
space size by selecting the temporary table space with the largest buffer
pool. Let us say you had two 16 KB temporary table spaces defined called
TEMP1 and TEMP2. Now assume TEMP1has a large buffer pool and TEMP2 has only
a small buffer pool; UDB will select TEMP1 as it has largest buffer pool. Once
selection is made, UDB will then alternate between ALL temporary table
spaces which have the chosen page size (16 KB).

This means that when performing an operation such as a sort, we alternate
between TEMP1 and TEMP2 because they both use a 16 KB page size. The
disadvantage here is that we only use TEMP1’s large buffer pool half the time,
because we are alternating between the two table spaces. A better solution in
this example would be to have a single 16 KB temporary table space with one
buffer pool.

3.3.5.3 Catalog table spaces
The system catalogs contain some LOB columns, as we described earlier in
this section. When the database manager needs to retrieve a page of LOB
data, it cannot use the buffer pools as a cache. The only way to improve
performance by providing some buffering is to use SMS or DMS file
containers. When these container types are utilized, the operating system’s
filesystem cache will provide some buffering.

For the catalog table space, use SMS or DMS with FILE containers and a
small extent size (2 or 4 pages).

The reason for this is that the catalogs contain a lot of relatively small tables.
DMS requires 2 overhead extents per table (Extent Map Page + 1st data
extent). SMS requires only 1 page.

If you reorganize table spaces in the temporary table space, then you will
need a temporary table space which has the same page size as the table
space being reorganized.

Note
Chapter 3. Data storage management for performance 57

3.3.6 Deciding number of tables and table spaces
A common question asked is, "How many tables should I put in a table
space?". This in turn affects another frequently asked design question, "How
many table spaces should I create?" Whatever number is used, the decision
can affect the performance of that particular table and table space.

Here are some considerations for placing tables, which might help you decide
which tables should go:

• When recovering your table spaces, if you have a collection of tables
related by Referential Integrity (RI) constraints or summary tables, then if
you ever need to restore the tables, they should be rolled forward together
to a point in time. If this is not done, then one table, or more, will be placed
in a check pending state.

• If you are using DMS table spaces, you then have the option of creating
what are known as "spanned" tables. A spanned table has data pages in
more than one table space. The best example of this is a table which has
its data in one table space, indexes in another, and LOB data in another.
Only DMS supports this. An advantage of using spanned tables is that, by
separating data and indexes, you can place the indexes in a table space
with its own dedicated buffer pool, which can help ensure that index pages
are kept in memory.

• How much raw data is in the tables is also important. If you have a number
of small tables with a small amount of data which are not changed
frequently, then it is feasible to group these tables together in a single
table space. Larger base tables which are heavily accessed and
frequently updated can justify having their own DMS table space. From a
performance point of view, if a very large table has its own table space,
then you can also assign it a dedicated buffer pool (see 3.4.1.2, “Multiple
buffer pools” on page 72 for details on this subject). By grouping tables in
specific table spaces, you can perform flexible backup strategies as you
have more granularity.

• Keeping important tables in their own table space will simplify
administration of this table space and will speed recovery should the table
space need to be restored (because you will only have one table to
restore). When required, you can also create a dedicated buffer pool for
these tables.

• Group infrequently accessed data in table spaces which use containers on
slower devices.

• Minimize relationships (such as RI constraints) between table spaces; this
simplifies recovery.
58 DB2 UDB V7.1 Performance Tuning Guide

• Consider table space capacity limits: 64 GB (4K pages), 128 GB (8K
pages), 512 GB (32K pages), 2 TB for long table spaces. These are the
limits for DB2 UDB Enterprise Edition (EE). If you use DB2 UDB
Enterprise-Extended Edition (EEE), they are the limits per partition.

• Consider leaving room for in-place table reorganization, which is faster
than reorganization using a system temporary table space because data
copied only once and not copied back and forth between temporary table
space and source table space.

• Place tables that need to be monitored more in their own table spaces,
since the LIST TABLESPACE SHOW DETAIL command gives the number of used
pages. If the table space is a DMS table space, the command also reports
the number of free pages and the high water mark information. For
example, you can monitor the growth of a fact table of a star schema by
putting it in its own table space.

• Try to minimize the overall number of table spaces.

3.3.6.1 Recoverability of "related" table spaces
It is worth remembering when assigning tables to table spaces that if you ever
need to recover a table space, then "relationships" with tables in other table
spaces will be a factor. For example, assume we have two table spaces TS1
and TS2; we recover TS1 from a backup, and then wish to roll forward to a
point in time. We then realize that one of the tables within T1 is a summary
table for one of the tables in T2. If we now simply roll forward TS1 and do not
roll forward TS2 to the same point in time, the summary table in TS1 will be
placed into a check pending state. The same would apply if the table in TS1
was the underlying table for the summary table contained in TS2.

3.3.7 Choosing table space containers
A container in DB2 is a physical storage device, and each container is
assigned to one table space. Containers can be either files, directories, or
devices; we will look at these in this section. Whichever container type you
decide to use for a table space, you should stay with it. You will NOT gain
good performance by mixing container types within a table space.

Over the last few years, many people have performed benchmarks on device
containers (raw logical volumes) versus directory and file containers (JFS file
systems). In nearly all cases these benchmarks have shown an overall
improvement in disk I/O throughput of 10-35 percent when using device
containers, as compared to JFS file systems. However, the database
administrator needs to take into account that actual gains will vary, depending
on the I/O workload mix of the application, OLTP or DSS.
Chapter 3. Data storage management for performance 59

Workloads like OLTP, which perform a large amount of random I/O
operations, benefit from the use of raw logical volumes. Customers with DSS
applications, which perform a large amount of sequential I/O operations, may
generally benefit from the sequential read-ahead feature of JFS file systems.
Even in this DSS environment, we still would favor DMS device containers,
which allow DB2 to ensure that pages are placed contiguously (this
influences things like prefetch performance).

3.3.7.1 Directory
This is the only container type that can be used in SMS table spaces. When
creating SMS table spaces, make sure you specify at creation time all the
directories (containers) that you want to incorporate into the table space;
additional containers CANNOT be added once the table space exists.

To improve performance with this container type, we recommend that each
container be mapped to a different physical drive to improve parallel I/O.

3.3.7.2 File
File containers are used by DMS table spaces and are files of a pre-allocated
size. DMS treats file and device containers in the same way. When choosing
a size for the file, be aware that the space required, for the chosen size, is
pre-allocated. When the file is created, DB2 will allocate the entire container
(file) at table space creation time. Even though this allocation is done at
creation time, the operating system’s filesystem may still fragment the file, so
in some cases, the allocation of pages may not be contiguous.

If using DMS table spaces, then in most cases, file containers will give poorer
performance when compared to raw device containers. The reason for this is
that with file containers, the database manager has to interact with the
operating system’s filesystem layer, unlike raw device containers, which the
database manager manages directly. An exception to this rule would be a
DMS table space using file containers that was created to hold LOB data. In
this case, performance might be greater than that of device container, since
DB2 can take advantage of the filesystem cache. Remember that LOB data is
NOT buffered by DB2, so using device containers would result in direct disk
I/O operations when accessing LOB data.

3.3.7.3 Device
On AIX, device containers are commonly known as raw logical volumes. This
type of container can only be used by DMS table spaces. When using device
containers, the space, as with file containers, is also allocated at table space
creation time. However, in this case, DB2 interacts with the raw device
directly, which ensures that page allocation is contiguous.
60 DB2 UDB V7.1 Performance Tuning Guide

The recommendation would be to use device containers when maximum
performance is your goal, the exception being DMS table spaces designed for
LOB data, as mentioned earlier.

The DMS and device container combination avoid the double buffering
scenario which can occur with DMS file containers or SMS directory
containers. This occurs when pages are cached by the operating system in its
filesystem cache and by DB2 in the buffer pools. This scenario is a waste of
resources.

3.3.8 Configuring table space containers
Before you create your table spaces, you need to think about how the
container configuration will affect the overall performance of the table space.
We will now look at the major factors affecting table space container
configuration.

3.3.8.1 Disk considerations
The total number of disks is determined by the amount of raw data you have
to store. For performance, the main thing to remember is that by using
multiple disks for your containers, you will enable DB2 to perform parallel I/O.
For example, you would generally achieve better performance with a large
number of low-capacity disk drives, allowing you to have a drive for each
table space container, than you would from having a small number of
high-capacity disk drives with multiple containers on each drive.

For random access workloads (such as OLTP), you will need as many disks
in the table space as are necessary to support the required I/O. For this type
of workload, writes will be the main concern, as they are more expensive than
reads (RAID systems), therefore the read/write ratio of one physical write has
to be considered.

For sequential access workloads (such as DSS), some of the same points
apply; you will need sufficient disks to support the required I/O. However, in
most situations, DSS workloads will be more “disk-friendly”; this is because
they have larger I/O sizes, which are generally sequential. This, along with
other factors such as prefetching and disk caching, means that a DSS
workload may be able to work efficiently with fewer disks than an OLTP
system, with similar I/O requirements.
Chapter 3. Data storage management for performance 61

Other disk recommendations would be:

• Try to spread your table spaces over as many disks as possible; however,
do NOT place more than one heavily accessed table space on a disk.

• If you only have a small number of disks available, then it is better to
spread ALL the table spaces over ALL the disks rather than to assign only
one disk to each table space.

There are also two table space configuration parameters that can be set with
either the CREATE TABLESPACE or ALTER TABLESPACE statements, which will also
affect the performance of your table space containers. These are defined in
two columns contained in SYSCAT.TABLESPACES, and the values can be shown
by running the command:

SELECT TBSPACE,OVERHEAD,TRANSFERRATE FROM SYSCAT.TABLESPACES

The DB2 optimizer considers these two parameters when determining the I/O
cost of accessing data from a particular table space. The results the optimizer
obtains can affect a number of its decisions, for example, whether or not to
use a particular index contained in a certain table space container, or which
table to select for the inner and outer tables in a join statement.

Overhead
Overhead is an estimate (in milliseconds) of time required by the container
before data is read into memory. The following formula can be used to
estimate overhead cost (I/O controller, latency, seek time). A detailed
explanation of this formula can be obtained in the DB2 UDB Administration
Guide: Performance, SC09-2945.

OVERHEAD = average seek time in milliseconds + (0.5 * rotational latency)

In this formula, 0.5 represents an average overhead of one half rotation and
rotational latency (milliseconds / full rotation) is given as:

(1 / RPM) * 60 * 1000

So, for a disk with an RPM = 10000, we can obtain:

(1 / 10000) * 60 * 1000 = 6.0 milliseconds

So, assume an average seek time of 5.4 milliseconds for this disk type; this
gives the following estimated OVERHEAD:

5.4 + (0.5 * 6.0) = 8.4 milliseconds

Transfer rate
This is also an estimate given in milliseconds. TRANSFERRATE represents time
taken to read one data page into memory.
62 DB2 UDB V7.1 Performance Tuning Guide

Assuming your table space containers represent one single physical disk,
then the DB2 UDB Administration Guide: Performance, SC09-2945 provides
the following formula:

(1 / spec_rate) * 1000 / 1024000 * PAGESIZE

In this formula, spec_rate is disk specification for transfer rate (MB/sec) and
PAGESIZE represents the table space PAGESIZE value you have chosen for the
table space which owns this container.

DB2 uses default values of 24.1 milliseconds for OVERHEAD and 0.9
milliseconds for TRANSFERRATE.

When calculating the TRANSFERRATE you need to take into account the following
considerations if your table space containers are made up of more than one
single physical disk (for example, an array such as RAID):

• If the spec_rate value is small, then multiply by the number of physical
disks on which the container resides, assuming bottleneck at disk level.

• If the number of disks is large, then I/O bottleneck is not likely to be due to
disks, but more likely due to disk controller or I/O buses (system). If this is
the case, then you will need to test the actual I/O rate. Refer to the DB2
UDB Administration Guide: Performance, SC09-2945 for further
suggestions on how to do this. One suggestion would be to monitor the
sequential scan of a large table.

We recommend that if your container spans multiple physical disks, then
these disks should ideally have the same OVERHEAD and TRANSFFERATE

characteristics.

If they are not the same, or you do not have the hardware documents that
contain the information you require for the formulas given, then set the
OVERHEAD value to the average of all the disks in the table space. As for
TRANSFERRATE, if no figures are available, try to set this to the value for a single
physical disk for OLTP environments (or the value of the slowest disk). For a
DSS environment, set TRANSFERRATE to the sum of all the disks. If your
workload is a mixture, then use a figure in between the recommendations for
OLTP and DSS.

3.3.8.2 Page size
The overall performance of your table space will be affected by the page size
you choose when issuing the CREATE TABLESPACE statement. The type of
workload you are going to put on the tables within the table space will help
determine an optimal page size.
Chapter 3. Data storage management for performance 63

If your applications perform mainly random reads/writes, then we would
recommend that a small page size should be used, as this will not waste
space in the buffer pools. If, however, your workload is more DSS than OLTP,
and accesses rows sequentially, then larger page sizes will provide better
performance.

However, there is an exception to this rule. When row size is smaller than
page size/255, we will have wasted space on each page, as there is a
maximum of 255 rows per page. If this applies to your system, then using a
smaller page size may be more appropriate. Remember that the database
manager allocates 76 bytes in each page (regardless of size) for control
information. So using the default size of 4 KB as an example, this would leave
4020 bytes for data. Maximum row lengths and column limits for each page
size are shown in Table 2.

Larger page sizes may allow you to reduce the number of levels in the index,
since more index keys will fit on each index leaf page. However, remember
that each index page can have only 255 index entries. Therefore, if your
index key size is small, a good percentage of the page might be wasted with
a large page size.

Table 2. Page sizes, row, and column limits

Page size Maximum row length Maximum columns

4 KB 4,005 bytes 500

8 KB 8,101 bytes 1012

16 KB 16,293 bytes 1012

32 KB 32,677 bytes 1012

Use large page sizes for temporary table spaces, as rows in tables that
reside in this type of table space will be accessed sequentially.

Note
64 DB2 UDB V7.1 Performance Tuning Guide

3.3.8.3 Extent size
The extent size you choose for a table space determines the number of table
data pages written to one container before DB2 writes to the next container;
the type of table space used is a major factor. When using DMS table spaces,
we allocate space one extent at a time; when one extent is full, a whole new
extent is allocated. This differs from SMS table spaces which allocate space
one page at a time.

This allocation policy will influence your table space performance. Let us
assume you have a number of small tables which you want to group together
in one table space. If you decide to use DMS, when a new table is created,
two extents are immediately required for the table object. If you have many
small tables in this table space, then the database manager would allocate a
lot of disk space to store a small amount of data.

In this situation, the recommendation would be to use a small extent size, or if
performance is not critical for these tables, then you can use an SMS table
space which allocates pages one at a time.

You may notice when using DMS table spaces that a number of pages are
used up when you first create the table space and then create the first object
(table). Figure 17 shows how these pages are used up on the initial creation
of both the table space itself and the object. Note that each subsequent table
added to the same table space will incur a minimum overhead of two extents.

If you use multiple page sizes in your database, and you plan to reorganize
your tables using the temporary table space (by specifying the USE option
of the REORG TABLE command), you need to ensure that you have a
temporary table space with the same page size as the table.

Note
Chapter 3. Data storage management for performance 65

Figure 17. Minimum initial extent requirements for DMS table space

When the first storage object in table space is created, the following pages
will be required, as shown above (assuming EXTENTSIZE=32):

Space required = 5 extents + 1 page = (5 * 32) + 1 page = 161 pages

The default EXTENTSIZE of 32 pages is generally acceptable for most systems,
but this should be reduced if your table space consists of many small tables.
Use larger values for tables that are mostly scanned (query only) or have a
very high growth rate. If your DMS table space does contain large tables, and
you do not increase the value for EXTENTSIZE but instead use a small extent
size, then you will incur an overhead when the database has to continually
allocate these small extents (either when a table is expanding or new tables
are being created).

When using "striped" containers (like RAID), extent size should be set to a
multiple of the stripe size (such as RAID strip size), as we discussed in 3.2,
“Mirroring, striping, and using RAID devices” on page 35.

Table space
creation container tag 1 page per container

table space header

space map page

object table data

1 extent

1 extent

1 extent

Table space
meta data

Object creation
(such as a table) extent for data

1 extent

1 extent

extent map
66 DB2 UDB V7.1 Performance Tuning Guide

3.3.8.4 Prefetch size
Setting the prefetch size correctly will improve the database manager’s ability
to read pages in advance and reduce execution times. The default value for
prefetch is defined by the database configuration parameter DFT_PREFETCH_SZ.
Most customers, however, change this value using the ALTER TABLESPACE

command, or they set it explicitly when they run the CREATE TABLESPACE

command.

For most environments, the recommendation would be to set the PREFETCHSIZE

equal to (EXTENTSIZE * number of containers). For optimal parallel prefetching,
the containers in your table space should reside on separate physical
devices. This is important when using a DMS raw container, as there will be
no prefetching or caching performed by the operating system.

If you want to perform aggressive prefetching initially, try doubling the figure
obtained after using the formula (EXTENTSIZE * number of containers).
Regardless of whether you want to increase or decrease prefetching, it is
best if the value used is still a multiple of EXTENTSIZE.

For PREFETCHSIZE considerations with RAID devices, see 3.2, “Mirroring,
striping, and using RAID devices” on page 35.

The NUM_IOSERVERS database configuration parameter specifies the number of
the I/O servers which perform prefetch I/O for the database. You should
normally set the same number for the NUM_IOSERVERS parameter as the number
of physical disks. If PREFETCHSIZE is increased above the suggestions outlined
so far (for “additional” prefetching), then the NUM_IOSERVERS database
configuration parameter should be set to at least PREFETCHSIZE /EXTENTSIZE.

3.3.9 Deciding how many containers to use
Once the decision has been made as to the configuration of the table space
containers, the next set of questions that commonly arise are to do with the
number of containers to use in a table space and what factors affect this
decision.

To disable prefetching on a table space, set PREFETCHSIZE to 0 using the
ALTER TABLESPACE statement.

Note
Chapter 3. Data storage management for performance 67

3.3.9.1 SIngle or multiple containers
Apart from the considerations we will look at next in 3.3.9.2, “Container sizes”
on page 68, there are some other points to be made regarding having single
or multiple containers in a table space and how this affects performance.

As long as the number of table spaces is small, then it is possible to have a
one-to-one mapping of table space containers to physical volumes. This
greatly simplifies the conceptual view of the physical database.

Normally you want to map each disk (or filesystem) to its own container for
the following reasons:

• Isolation from disk errors

• Ability to better isolate parts of a workload (or database) from one another:

For example, separating tables scanned simultaneously into separate
table spaces with separate disks can reduce disk head movement (thus
seek time) when doing sequential scans.

As another example, you may want to protect time-critical data from
random/adhoc queries on other data (remember that there are usually still
shared CPUs and buses, so this is not always effective).

3.3.9.2 Container sizes
One of the factors which will affect the parallel I/O performance is the size of
the containers used. If you use multiple containers of different sizes in a table
space, then the effectiveness of any parallel prefetches performed against
that table space will be reduced, for example:

• You create a new table space containing one small container and one
large container. Eventually the small container will become full and any
additional data will be written to the large container. The two containers
are now unbalanced. Having unbalanced containers reduces the
performance of parallel prefetching to nothing, as a SELECT statement may
result in some data being required from the small container, but a large
amount may be required from the large container.

• You have a table space which contains a number of large containers;
these start to fill up, so you add a small container. The table space will
then be rebalanced and the small container will contain far less data than
will now reside in the larger containers, and once again the database
manager will not be able to optimize parallel prefetching.
68 DB2 UDB V7.1 Performance Tuning Guide

In summary, if you must use multiple containers, keep them the same size for
best performance, and as we discussed in 3.3.7, “Choosing table space
containers” on page 59, keep the container types the same if performance is
your goal.

3.3.9.3 Factors affecting number of containers
When you decide the number of containers, you should consider the following
factors:

Availability
Other than parallel I/O performance, the main advantage of mapping one
container to each physical disk is availability. With this system setup, disk
errors will be isolated to only one container and therefore only one table
space.

Load
With disk drive capacity increasing all the time, it may not be cost effective for
you to have only one container per disk (especially as the disk could be
18 GB, 32 GB, or more). However, there is a scenario in which having more
than one container on a disk may not cause you any performance problems.
Imagine that you have two table space containers on an 18 GB drive
(9 GB/container), each belonging to two different table spaces. Normally this
setup would be sub-optimal, but if one of the table spaces is only accessed at
certain times (for example, month-end), and the other is accessed during
normal operation but not at month-end, then having containers share the
same physical disk would not be a problem.

Apart from the Availability and Load considerations discussed, you may need
multiple containers on older operating systems to get past a file size limit
(such as 2 GB)

You also may need multiple containers per filesystem to reduce inode
contention (AIX). One file for a heavy read/write table will result in inode
contention; 2 or more containers on the same filesystem can help reduce this
contention.

Introduced with DB2 UDB v7.1 is the ability to increase the size of DMS
containers using the RESIZE or EXTEND clauses of the ALTER TABLESPACE

command. See the DB2 UDB SQL Reference, SC09-2974 for more
detailed information.

Note
Chapter 3. Data storage management for performance 69

3.3.9.4 Considerations for separating data and indexes
Using DMS does not separate data and indexes into different table spaces
unless you do so specifically to assign them to different buffer pools. If you
need to ensure that certain indexes always remain in memory, then that
would be a valid reason to move the indexes to their own table space and
assign that table space its own buffer pool. Make sure you have sufficient
disk I/O bandwidth to cope with this setup.

3.3.9.5 Table space names
With DB2 UDB v7.1 we introduce the ability to rename a table space —
although this does not appear to improve performance as such, it can
certainly save time! Currently, the name of a table space is specified by the
user during table space creation, and there is no way of changing it during the
lifetime of the table space object. If you wish to change the name of a table
space, then the only way to accomplish this is through dropping and
recreating objects. The objects within the table space and the table space
itself need to be dropped.

The table space is then recreated using the new name, and the objects within
the table space are then recreated. Obviously this is a big problem in terms of
availability if the table space is very large or contains many data objects.

The new command will allow a user to rename the table space with a single
SQL statement (for example, only updating catalog records and changing
table space control information). An example of this would be:

RENAME TABLESPACE USERSPACE1 TO NEWSPACE1

Please refer to the DB2 UDB SQL Reference, SC09-2974 for more details.

3.3.10 Other tips
• Try to keep the number of table spaces small, and keep multiple objects

(with similar performance requirements) in each table space.

• Use DMS table spaces with raw device containers for user data and
indexes as well as for the log files.

If you rename a table space, then you need to restore the table space from
an old backup image taken before the rename command was run. The new
name must still be used to perform the restore.

Note
70 DB2 UDB V7.1 Performance Tuning Guide

3.4 Buffer pools

It is no secret that accessing memory is faster than disk I/O. DB2 uses
database buffer pools to attempt to minimize disk I/O. Database logging,
however, is disk I/O which cannot be avoided, but which can be made more
efficient; see 3.5, “Database logs” on page 78 for more details on this.

The most common question asked is, "How much memory do I need to
allocate for buffer pools?" Although there is no definitive answer to this
question, the general rule of thumb would be to start with about 75% of your
system’s main memory devoted to buffer pool(s), but this rule has to be
considered VERY carefully before being followed. The biggest factor for
consideration is obviously the answer to the question, "Is this machine a
dedicated database server?"

If the answer is no, then allocating 75% of system memory to DB2’s buffer
pools is not going to be a good idea. It is the database administrator’s job to
determine how much memory there is available on the system for DB2’s use,
after allowances for the operating system and other applications have been
made.

Many people want to know why the default buffer pool (IBMDEFAULTBP) is
so small (1000 * 4 KB). The main reason is to allow you to connect to a
database in situations where you may have over-allocated memory
elsewhere. We do not recommend that you run a database using only the
default buffer pool, but once connected to your database, you can then add
additional buffer pools dedicated to specific table spaces.

When you add buffer pools to your database, the total memory required by all
buffer pools must be available to the database manager to allow the buffer
pools to be activated when the database is started. Should this memory not
be available, then only the default buffer pool (IBMDEFAULTBP) is started along
with one buffer pool for each table space which uses a page size different
from the 4 KB default. This allows you to connect to your database. These
extra buffer pools will be restricted to 16 pages. If this behavior was not the
default, then you could potentially allocate too much memory to your buffer
pools; and when you attempted to activate or connect to the database, the
operation would fail.

Each buffer pool page allocated uses space in the memory allocated for the
database heap (DBHEAP), for internal control structures. Therefore, if you
increase your BUFFPAGE parameter and/or the total size of your buffer pools
then also ensure that you remember to increase DBHEAP.
Chapter 3. Data storage management for performance 71

3.4.1 Mapping table spaces to buffer pools
You can create multiple buffer pools besides the default buffer pool
IBMDEFAULTBP. You need to consider the following before determining the
number of buffer pools your database should have.

3.4.1.1 Single buffer pool
In most situations, having one large buffer pool is the recommendation. Apart
from its size, a single buffer pool needs no tuning. A single large buffer pool
will also allow DB2 to efficiently utilize memory that has been allocated for
buffer pool use.

If you decide to opt for table spaces using multiple page sizes, then you
should create only one buffer pool for each page size. If you want to create
table spaces using a page size other than the default 4 KB, then you will need
a buffer pool which uses the same page size.

3.4.1.2 Multiple buffer pools
Multiple buffer pools, if badly configured, can have a huge negative impact on
performance. When created for the right reasons, multiple buffer pools can
improve performance; however, not all workloads will benefit.

You should consider defining multiple buffer pools when:

• You want to create tables which reside in table spaces using a page size
other than the 4 KB default. This is required.

• You have tables which are accessed frequently and quickly by many short
update transaction applications. Dedicated buffer pool(s) for these tables
may improve response times.

• You have tables larger than main memory which are always fully scanned.
These could have their own dedicated buffer pool. However, it needs to be
large enough for prefetching requirements of such a large table (256 KB
up to # MB). If these tables are scanned frequently then you could swamp
the other buffer pools. (Tables this large will most likely always generate
disk I/O irrespective of buffer pool size.)

If you mistakenly override the default buffer pool size and set it too big,
resulting in a database start failure, then the registry variable
DB2_OVERRIDE_BPF can be used to override the size of the default buffer pool.
See the DB2 UDB Administration Guide: Performance, SC09-2945 for
more details on this variable.

Note
72 DB2 UDB V7.1 Performance Tuning Guide

Extended storage (see 3.4.3, “Extended storage” on page 76) was introduced
in DB2 UDB v5.2 and is a buffer pool enhancement that can either help or
hurt performance.

3.4.2 Buffer pool memory
There are two main ways to allow DB2 UDB to exploit AIX’s segmented
memory address model. These involve setting some DB2 registry variables to
free up two 256 MB segments of memory which will allow larger buffer pools
to be created.

Set the registry variables DB2_MMAP_READ and DB2_MMAP_WRITE to OFF on AIX with
SMS or DMS table space file containers. When you set these parameters off,
the database manager:

• Frees up extra 256 MB segments

• Enables the use of the AIX JFS file system cache

An explanation of these variables is also given in the 3.4.2.1, “MMAP
configuration parameters” on page 74.

Set the registry variable DB2_FORCE_FCM_BP=NO, which is the default for this
variable. When it is set to YES, the Fast Communication Manager (FCM)
buffers are allocated from the same shared memory segment. This gives
optimal FCM performance when you use the Enterprise-Extended Edition of
DB2 UDB and have multiple database partitions on one physical node.
However, the Enterprise Edition of DB2 UDB will be working with only one
database partition. By setting the variable to NO, we free another shared
memory segment which can then be used for buffer pools.

For customers using AIX 4.3.2 and later, the above points may not be as
relevant. This is due to enhancements in shared memory segment size.
Using AIX at this level and above will allow shared memory segments up to
2 GB in size.

To eliminate database initialization overhead, which could, for example, be
caused by activating large buffer pools, use the ACTIVATE DATABASE <dbname>

command. This works well in a dynamic environment (such as a Web
server) where all applications may frequently disconnect from the
database.

Note
Chapter 3. Data storage management for performance 73

3.4.2.1 MMAP configuration parameters
We have recommended setting these two registry variables to OFF. Here we
will attempt to explain some of the reasons for this decision. The main
advantage is that by setting these to OFF, we free up an extra memory
segment which can be made available for the DB2 buffer pools. The following
diagrams, Figure 18 and Figure 19, attempt to explain the differences made
by setting these variables ON or OFF, and how this affects data page reads
and writes for DB2 UDB.

Figure 18. Example with mmap variables set to OFF

In Figure 18 we see that when DB2_MMAP_READ and DB2_MMAP_WRITE are set to
OFF, and we are using SMS or DMS file containers, the operating system’s
filesystem cache is utilized. Although at first glance, this situation seems like
an obvious overhead, in reality this is not the case. By using the JFS
(filesystem) cache we are letting the operating system take care of the I/O
operations to disk.

system memory

required file page
not in JFS cache

SMS or DMS File Container

DB2_MMAP_READ=OFF
DB2_MMAP_WRITE=OFF

DB2 UDB

DB2 performs a read. If the required file page is not in JFS
cache, it is read from disk. File page is then copied from JFS
cache to DB2's process buffer. Writes are copied from
DB2 shared memory to JFS cache, then written to disk at a
later stage.

JFS Cache

file pages

DB2 process -
shared memory

read page

write page

read page

write page
74 DB2 UDB V7.1 Performance Tuning Guide

Once the database performs a write, the changed file page is copied from the
DB2 processes buffer in memory to the JFS cache. In most cases, data is not
written immediately from the JFS cache, but the write is done at a later time.
The filesystem log provides recoverability should the system crash while the
filesystem cache still contains dirty pages.

The main advantage for DB2 is that this "late writing", which is known as
write-behind, allows the database to continue processing without having to
wait for an I/O request to complete.

Figure 19. Example with mmap variables set to ON

In Figure 19 we show the default behavior, which is to have both variables set
to ON. Here we are utilizing mmap (memory mapped) I/O which allows files to
be mapped directly to one of DB2’s memory segments. When using mmap we
bypass the filesystem and the usual operating system kernel buffers.

One of the main reasons mmap is implemented by default is that by mapping
files explicitly and accessing it by address, the total cost of the system call
overhead is reduced because the path length is shorter.

(segment 14)

system memory

file data

SMS or DMS File Containermmap subroutine

DB2_MMAP_READ=ON
DB2_MMAP_WRITE=ON

DB2 UDB
read page

write page

Memory mapped file, file data does not have to be
copied from JFS cache into db2 processes data buffer
as with normal read and write, this reduces I/O data
movement

db2 shared memory
Chapter 3. Data storage management for performance 75

However, as we access the file by address, we do not use the read() or write()
subroutines. In AIX the implication of this is that we do not benefit from the
write-behind feature described earlier. The result is that modified pages may
remain in memory and be written to disk in a random manner when the Virtual
Memory Manager’s (VMM) page stealer deems it necessary. If this happens,
we could then see a number of small random I/Os which are inefficient.

Although this sounds like a major disadvantage, you must remember that if
your database has been designed with performance in mind, the majority of
table spaces should use DMS device containers. This means that the
database manager is responsible for these operations and not the operating
system. The performance impact in this case will be minimal.

3.4.3 Extended storage
Extended storage is essentially a secondary cache between the buffer pools
and the disks (the buffer pools are the primary cache). On AIX this works by
allocating extra shared segments (NUM_ESTORE_SEGS), each of which is the
same size (ESTORE_SEG_SIZE).

Extended storage was introduced to exploit main memories larger than 4 GB
on 32-bit systems. 4 GB was, on most platforms, the limit of virtual
addressable memory for a 32-bit process. It is now common to see 32-bit
systems with more than 4 GB of real addressable memory. The database
manager cannot directly manipulate data that resides in the extended storage
cache. However, it can transfer data from the extended storage cache to the
buffer pool much faster than from disk storage.

Remember, though, that there is an overhead (CPU) when copying pages
into extended storage (detach/attach costs and the cost of the copy). Every
time a page is read out of extended storage, rather than disk, this saves the
cost of the disk I/O (at the expense of CPU cost, as already mentioned). In
I/O-bound systems, where workload is such that pages are frequently read
from the extended storage, compared to number of writes, you will benefit. If
you seem to be writing pages to extended storage, but never read them in (for
example, if you are dirtying most pages) then there will be no performance
gain, and you may actually impact your system’s potential performance.

Extended storage can be enabled on a per-buffer-pool basis (using ALTER

BUFFERPOOL) so if you have multiple buffer pools defined allocated to individual
table spaces, then you can enable extended storage only for those table
spaces which will benefit from the addition of extended storage.
76 DB2 UDB V7.1 Performance Tuning Guide

3.4.3.1 When to use extended storage
You should use extended storage when your system/database/workload meet
the following criteria:

• If your operating system’s limit on the amount of addressable virtual
memory for a process limits the size of the buffer pool, without utilizing
all of the memory in the system. The larger the amount of memory
available for to extended storage then larger the potential benefit will be
(for example, when extended storage If your operating system’s limit on
the amount of addressable virtual memory for a process limits the size of
the buffer pool, without utilizing all of the memory in the system. The larger
the amount of memory available for to extended storage then larger the
potential benefit will be (for example when extended storage becomes
larger than the buffer pool).

• Workload is I/O-bound.

• Workload is read only/mostly — potentially only one copy goes to
extended storage; subsequent page victimization re-uses the original
copy. This works well if extended storage large enough to keep important
tables/indexes fully cached (assuming these are too large for buffer pool).
This scenario gives multiple reads for each copy in extended storage.

Therefore, if the workload is mainly read-mostly, or your workload involves
large temporary tables which may otherwise spill to disk, then extended
storage is a good choice.

3.4.3.2 When not to use extended storage
You should NOT use extended storage when your system/database/workload
meet the following criteria:

• When the total number of pages allocated to extended storage
(num_estore_segs * estore_seg_size) could alternatively be allocated to the
buffer pool(s). The exception to this is, when running multiple buffer pools,
you may want each buffer pool to have its own dedicated pages (NPAGES),
but you want all buffer pools to share the extended storage area. We do
not recommend this, however, because in most situations, defining a
single buffer pool which is the same size as that of the dedicated buffer
pools plus extended storage will outperform the other multiple buffer pool
configuration. This occurs because by having one buffer pool, we do not
incur the overhead of the extra copies involved when moving pages from
buffer pool to extended storage.

• If you are CPU-bound, as described above, you are using up CPU cycles
while trying to save disk I/Os. So if you are CPU-bound and not I/O-bound,
extended storage will actually hurt performance.
Chapter 3. Data storage management for performance 77

• When the workload (or at least the portion in buffer pools that are
configured to use extended storage) would not result in enough pages
being read from extended storage, to offset the cost of placing the copies
into extended storage.

3.4.3.3 Other extended storage considerations
The number of shared segments (NUM_ESTORE_SEGS) should be:

Memory for_estore / 256MB

Set extended storage segment size (ESTORE_SEG_SIZE) to:

Memory_for_estore / num_estore_segments_just_calculated

3.5 Database logs

In this section we will look at performance considerations relating to database
logging. If set up inappropriately for your workload, database logging could
become a significant overhead.

3.5.1 Why logging performance is important
Ignoring the performance of your database in relation to its logging can be a
costly mistake, the main cost being time. The log files exist to provide the
ability to be able to recover your environment to a consistent state and
preserve the integrity of your data.

With the introduction of DB2 UDB v7.1, total log files can now be up to 32 GB
in size, and you can perform extremely large amounts of work within a single
transaction. With customers now using log spaces which are gigabytes in
size instead of megabytes, the physical layout of the log files becomes very
important. Placement of these files needs to be optimize, not only for write
performance, but also for read performance, because the database manager
will need to read the log files during database recovery.

3.5.2 Filesystem or raw logical volume
We now have two options when deciding how to store the DB2’s transaction
log files, either in the operating system’s filesystem or in a raw logical volume.
The most familiar method here is to use the filesystem, as this is all we have

Prior to Version 7.1, the total log files must be up to 4 GB.

Note
78 DB2 UDB V7.1 Performance Tuning Guide

supported in the past for logs. Using raw logical volumes for logging will bring
performance improvements, similar to those gained from switching from table
space file containers to DMS raw devices. However, it is worth pointing out
that, as in most situations, there are advantages and disadvantages to using
raw logical volumes for your log devices:

Advantages:
• The I/O path is shorter, since you are now bypassing the operating

system’s filesystem.

• Raw device striping may provide faster I/O throughput.

• No restrictions are imposed by a filesystem.

• A raw device can span multiple disks.

Disadvantages:
• The device (logical volume) created for the logs must be dedicated to

DB2.

• The device (logical volume) created for the logs cannot be operated upon
by any operating system utility or third-party tools which would back up or
copy from the device.

• Currently, if using DPropR, the read log API will not call the user exit if you
use the raw log device. The recommendation is that DPropR should not be
used when using raw log devices. Similarly, do not use raw log devices if
you use the sqlurlog API.

3.5.3 Mirroring
Always mirror your log devices; the log files are crucial to your database and
you need to ensure that the disks they reside on are mirrored. It is
recommended that the log disks be entirely dedicated to DB2 and that no
other processes write to these disks. If possible, place the disks on separate
disk controllers to maximize availability.

3.5.4 Placement on disks
Generally, we would recommend that the disks chosen for the log devices are
the fastest disks in the system. Another consideration for performance is the
placement of the container on the physical disk. To optimize performance for
log devices, ensure that the logical device used by DB2 (filesystem or raw
logical volume) is placed on the outer edge of the disk. There are more data
blocks per track at this location on the disk. This location, therefore, lends
itself to the typical activity of the DB2 logger process which writes to the log
files, mostly with a large number of sequential reads and writes.
Chapter 3. Data storage management for performance 79

3.5.5 Number of log files
Your active log space will be determined by the number of log files you define.
As we have seen already, the active log space is defined by the parameters
(LOGPRIMARY + LOGSECOND) * LOGFILSIZ. You need to take into account your
database workload and therefore the potential logging activity.

If, for example, you have an OLTP type workload, then you would not obtain
good performance from log files that are too small, as you would fill them very
quickly. In this case, if a user exit were enabled, this would mean more work
for the database manager.

Most DSS workloads with little update, insert, or delete activity may benefit
from a smaller number of log files. However, in this environment, where
logging activity is low, it may be worthwhile using a larger log file size to
reduce administration overhead.

3.5.6 Size of logs
Remember that the total active log space can now be up to, but not including,
32 GB. So the calculation would be:

(LOGPRIMARY + LOGSECONDARY) * LOGFILSZ * 4k < 32GB

In this formula, LOGFILSIZ represents the Log File Size database configuration
parameter.

If you are using raw devices for logging, then remember that log records are
still grouped into log extents; the size of each is LOGFILSIZ (4 KB pages). DB2
places the log extents consecutively in the log device, and every log extent
carries with it a 2-page overhead for extent header information. This affects
the number of log extents which can be written to your raw log device. The
total number can be calculated by the formula:

raw-device-size / (logfilsz + 2)

The device must be large enough to support the active log space that you are
going to allocate. By this we mean that the number of log extents which can
be contained on your raw device must be greater than (or equal to) the value
of LOGPRIMARY.

For more details on this, please refer to the DB2 UDB Administration Guide:
Implementation, SC09-2946.
80 DB2 UDB V7.1 Performance Tuning Guide

3.5.7 Flushing logs during on-line backup
Since Version 7.1, the active log is closed when the on-line backup
completes. This can significantly reduce log management during on-line
backups. You do not have to do anything to use this new feature, as it is the
default behavior. To disable it, use the DB2_DISABLE_FLUSH_LOG registry variable;
set this to ON. You may want to disable this feature if:

• You have limited disk space. Each time an active log file is truncated, an
amount of space is left unused with the physical log file. If you perform a
very large number of on-line backups each day, you may wish to disable
the inclusion of the last active log file. The amount of space wasted will
obviously depend on the size of your log files.

For example, if your log files are 50 MB each and you take 4 on-line
backups per week, and on average, each time the active log was
truncated you wasted 50% of the space, then you would waste a total of
5.2 GB over one year. Note that truncating 50% each time is just an
example, and the actual amount depends on how much of the current
active log file has been used.

You will need to trade off the advantage of having an on-line backup and
all the required logs against the amount of space wasted.

• You may also wish to disable the inclusion of the last active log file if you
find you are receiving Log Full messages a short time after the completion
of the on-line backup. When a log file is truncated, the reserved active log
space is incremented by the amount proportional to the size of the
truncated log. The active log space is freed once the truncated log file is
reclaimed. The reclamation occurs a short time after the log file becomes
inactive. It is during the short interval in between that you may receive
Log Full messages.

For example, assume you have 100 MB of active log space (LOGPRIMARY +
LOGSECOND) * LOGFILSIZ. Then all logging required by concurrent, active
units of work (UOWs) must fit in this space.

As an example, assume that we have a unit of work ‘A’ which starts and
initially writes 40 MB to active log space. Just after this UOW ‘A’ starts, an
on-line backup of this database completes, and by default, will now
truncate the current active log file. Assume that, as a result of the
truncation, we have just wasted 10 MB (this is what space was remaining
in the physical log file); this 10 MB a moment ago was part of active log
space.
Chapter 3. Data storage management for performance 81

But our UOW ‘A’ has still not completed, so the 10 MB of truncated space
reduces available active log space by 10 MB. This means at this point in
time, active log space would actually be 50 MB (40 MB which UOW ‘A’
wrote + 10 MB truncated space) and not 60 MB.

So if another UOW ’B’ tried to start at this point, and required MB of log space
it will receive SQL0964. The reason here is that the first UOW ‘A’ has not
completed. Once the UOW ‘A’, which commenced before the log truncation
took place, has completed, space reclamation will begin.

3.5.7.1 Pre-version 7 behavior
While performing on-line backup, all activities taking place in the database
are logged.

When an on-line backup is restored, the logs must be rolled forward at least
to the point in time at which the backup was completed.

The log file used at backup time may continue to be open long past the time
of the backup completion.

3.5.7.2 Version 7 behavior
Changes are made in the on-line backup such that the active log is closed
when an on-line backup completes.

If USEREXIT is ON, the active log will be archived.

3.6 Before creating a database

Once the physical space allocation is complete in the form of logical volumes
and you have decided what table spaces and tables will be created, the next
step is to actually create the database and table spaces.

We suggest making the create database statement simple, using as many
defaults as practical. Most resources, such as table spaces and containers,
can be added to the database once the basic database structure exists.

SQL0964 ’Log Full’ is a logical error which indicates that active log space is
full. This is different from the physical log file being full.

Note
82 DB2 UDB V7.1 Performance Tuning Guide

3.6.1 Number of instances
The number of instances you define, and therefore databases, will only play a
major part in performance tuning if you over-allocate system resources by
having too many large databases on the same machine. Effective capacity
planning needs to be performed before adding production instances and
databases to a server which may already contain another DB2 production
environment.

Whenever adding a new production database, take into account future
requirements, for example:

• Will you need additional CPUs, memory, disks, or adapters for your
current system?

• Can you afford the maintenance window to install these if required?

• Should you consider running the new database on its own dedicated
server?

3.6.2 Number of databases per instance
In a production environment, we would generally recommend that you create
one database per instance. This brings a number of advantages, for example,
there is isolation from errors between databases, database manager
configuration parameter changes affect only one database, information in the
db2diag.log file is dedicated to the database, and configuration changes can
be made without affecting other instances or databases.
Chapter 3. Data storage management for performance 83

84 DB2 UDB V7.1 Performance Tuning Guide

Chapter 4. Database design

So far, we have discussed the physical layout of the disk storage, the table
space design, and the layout of buffer pools in the previous chapter. The next
major consideration, in order to obtain acceptable response times, is the
design of tables and indexes. When you design tables, you must choose an
appropriate data model and data types for them. With respect to indexes, you
need to be aware of the advantages and disadvantages of creating indexes,
and create appropriate ones.

DB2 UDB allows the database administrator to choose from a variety of
options when creating tables and indexes, and it is essential for the database
administrator to understand the various advantages and disadvantages of
choosing a particular option.

In this chapter, we will explain how each of these options affects database
performance, and provide helpful information that a database administrator
can use to design new tables and indexes or improve existing tables and
indexes.

4.1 Tables and performance

Once the table spaces have been created and configured, we can begin to
look at what design factors will influence the performance of the tables
themselves. In this section we will look at these factors.

4.1.1 What to consider before creating tables
Before creating tables, you should draw a logical design of your database. In
this section we discuss aspects of logical database design that affect
performance.

4.1.1.1 Normalizing
Normalization reduces redundancy from your data and can improve the
performance of update and delete statements, since you only have to do it in
one place. By normalizing your data, you try to ensure that all columns in the
table depend on the primary key.

There are four “forms” of normalization (first, second, third, and fourth). We
will show an example of the third and fourth forms; however, examples of all
four forms can be found in the DB2 UDB Administration Guide: Planning,
SC09-2946.
© Copyright IBM Corp. 2000 85

First normal form
In first normal form, each cell in the table only contains one value.

Second normal form
In second normal form, each non-key column is dependent upon the entire
key and not just part of the composite key.

Third normal form
In third normal form, each non-key column is dependent upon the key column
as in the second form, but is also independent of other non-key columns.

In Table 3 we can see that the DeptName column is dependent on the DeptNo

column, so this table does not conform to the third normal form. If we update
DeptName for one employee, this would not update the DeptName column for
other employees belonging to the same department.

Table 3. Table not in third normal form

In this basic example using normalization to conform to the third normal form,
would produce two tables (Table 4 and Table 5). Now updating the DeptName

column is easy, as we just update column in Table 5.

Table 4. Table in third normal form (1)

Table 5. Table in third normal form (2)

Fourth normal form
In fourth normal form, no row in the table must contain two or more
multi-valued facts about an entity. In Table 6 we are displaying two
relationships, one between EMPNO and Project, and one between EMPNO and
DevLang (programming language used). Since this table represents both
relationships, it does not conform to the fourth normal form.

EMPNO (Primary Key) LastName DeptNo DeptName

001 Brown 01 Support

002 Smith 02 Sales

EMPNO (Primary-Key) LastName DeptNo

001 Brown 01

002 Smith 02

DeptNo (Primary-Key) DeptName

01 Support

02 Sales
86 DB2 UDB V7.1 Performance Tuning Guide

Table 6. Table not in fourth normal form

To fix this problem, we need to represent this information in two separate
tables, Table 7 and Table 8.

Table 7. Table in fourth normal form (1)

Table 8. Table in fourth normal form (2)

In this example, it is important to remember that if only certain programming
languages (DevLang) were used for certain projects, then the values in these
columns would be interdependent, so the original table, Table 6, should not
be split into the two separate tables we created. One consideration when
normalizing tables is that the more tables you create, then the more likely it is
that the JOIN requirements between these tables will impact query
performance.

EMPNO (Primary-Key) Project (Primary-Key) DevLang
(Primary-Key)

001 Budget Tracker C++

001 Customer Database C++

001 Budget Tracker Java

001 Customer Database Java

EMPNO (Primary-Key) Project (Primary-Key)

001 Budget Tracker

001 Customer Database

EMPNO (Primary-Key) DevLang (Primary-Key)

001 C++

001 Java

It is our recommendation to start with tables in the fourth normal form, then
measure the performance. If performance is unacceptable, structure the
table in the third normal form, then reassess performance.

Note
Chapter 4. Database design 87

4.1.1.2 Denormalizing
With normalization, we are striving to achieve a database implementation
where each item in the database is contained in one place and is not
duplicated. Traditionally this has been done to improve update and delete
performance. The disadvantage is obviously data retrieval, specifically when
a query is accessing a large number of related pieces of data from different
tables.

Denormalization is the process of placing the same piece of information in
more than one place in an effort to improve retrieval performance. If you want
to denormalize your tables in an attempt to improve performance, consider
the following:

• Can the database be tuned in some other way to improve performance
without denormalizing?

• What are the likely performance gains by denormalizing, and will these be
a reasonable trade-off against the added update overhead?

• Can we easily revert back to normalized tables if the performance gains
are not what we expected?

4.1.1.3 Data types
Data types are a column attribute definition used when a table is created. The
data type tells us what kind of data will be held in the column and what the
length of the values in it will be.

In DB2 UDB, data types can be categorized as:

• DB2-Supplied Data Types: These can be Numeric, String (Binary, Single
Byte, Double Byte), or DateTime.

• User Defined Data Types: These can be User Defined distinct Types
(UDTs), User Defined Structured Types, or User Defined Reference
Types.

For more information on data types, please refer to the DB2 UDB
Administration Guide: Implementation, SC09-2944, and the SQL Reference,
SC09-2974.

In DSS environments where the data is never updated once it is loaded,
denormalizing can be a good choice, since it speeds up queries.

Note
88 DB2 UDB V7.1 Performance Tuning Guide

From a performance perspective, the use of User Defined Data Types will not
impact response times. For example, User Defined distinct Types share the
same code that is used by built-in data types, to access built in functions,
indexes, and other database objects.

4.1.1.4 Use VARCHAR or LONG VARCHAR
In the past, the data type LONG VARCHAR has been used to support columns of
up to 32,700 bytes. However, the limit for VARCHAR columns is now 32,672,
which should be taken into account when designing tables, as it is now worth
considering using VARCHAR instead of LONG VARCHAR. For example, when an
expression returns a varying length string using LONG VARCHAR, these
expressions cannot be used in:

• Basic quantified BETWEEN or IN predicates

• Column functions

• VARGRAPHIC, TRANSLATE and datetime scalar functions

• Pattern operand in a LIKE predicate

• String representation of a datetime value

As a result of these restrictions, in most cases it makes more sense to use
the VARCHAR data type and impose fewer restrictions on the expression.

• One final and very important consideration is that data stored in LONG

VARCHAR columns is not buffered in the database buffer pool. The VARCHAR

data pages, however, are stored in the buffer pools.

4.1.1.5 Why define columns as NOT NULL?
The term NULL signifies an unknown state. Calculations performed on
columns containing null values will result in an unknown outcome. Nearly all
data types in DB2 support null values.

As of DB2 UDB V7.1, the data types LONG VARCHAR and LONG
VARGRAPHIC (not discussed here) will be marked as deprecated. This
data type will be supported, but enhancements may not be implemented for
this data type. If you are defining items such as structured types, do not
define them using LONG VARCHAR or LONG VARGRAPHIC types. Use
the CLOB or DBCLOB data type instead.

Note
Chapter 4. Database design 89

A column can reject null values when you specify the NOT NULL clause in the
column definition of the CREATE TABLE statement, for example:

CREATE TABLE TABNULL (col1 DECIMAL(1,2) NOT NULL WITH DEFAULT 10)

In the example shown the column col1 will not accept null values, and a
known value must be entered. You can also specify a default value to be
inserted by combining the WITH DEFAULT option and NOT NULL options of CREATE
TABLE. When this is done, if a row is inserted and a value is missed for the
column using the NOT NULL WITH DEFAULT definition, then the value used for the
WITH DEFAULT clause will be inserted, as we have specified that null values will
not be accepted.

In general, columns defined as NOT NULL perform better than nullable columns.
The reason for the performance gain is the path length reduction; the
database engine does not have to check for null values in a NOT NULL column.
It is worth mentioning that there are space savings as well when using NOT

NULL. Every nullable column requires one extra byte per column value. By
defining columns as NOT NULL, there will be space savings which may lead to a
reduced number of used tables, index pages, and index levels, which can
improve query performance.

4.1.1.6 Identity columns
Significant performance enhancement can be realized using DB2 generated
identity values compared to those implemented by an application.

Identity columns are ideally suited to the task of generating unique primary
key values. Applications can use identity columns to avoid the concurrency
and performance problems that can result when an application generates its
own unique counter outside the database. For example, one common
application-level implementation is to maintain a 1-row table containing the
counter, and having each transaction lock this table, increment the number,
and then commit (unlock); that is, only one transaction at a time can
increment the counter. In contrast, if the counter is maintained via an identity
column, then much higher levels of concurrency are achievable because the
counter is maintained by DB2 and is not locked by transactions, and thus one
uncommitted transaction that has incremented the counter will not prevent
other subsequent transactions from also incrementing the counter.

The counter for the identity column is incremented (or decremented)
independently of the transaction. If a given transaction increments an identity
counter two times, that transaction may see a gap in the two numbers that are
generated because there may be other transactions concurrently
incrementing the same identity counter (inserting rows into the same table).
90 DB2 UDB V7.1 Performance Tuning Guide

If an application must have a consecutive range of numbers, that application
should take an exclusive lock on the table that has the identity column. This
decision must be weighed against the loss of concurrency to that table from
other applications. Furthermore, it is possible that a given identity column can
appear to have generated gaps in the number, because a transaction that
may have generated a value for the identity column had rolled back, or that
the database which has cached a range of values has been deactivated
(normally or abnormally) before all the cached values were assigned.

The sequential numbers that are generated by the identity column have the
following additional properties:

• The values can be of any exact numeric data type with a scale of zero.
(SMALLINT, INTEGER, BIGINT, or DECIMAL with a scale of zero). By contrast,
single and double precision floating point are considered approximate
numeric data types and are not allowed as identity columns.

• Consecutive values can differ by any specified integer increment. The
default increment is 1.

• The counter value for the identity column is recoverable. If DB2 should fail,
the counter value is reconstructed from the logs, thereby guaranteeing
that unique values continue to be generated across a DB2 failure.

• Identity column values can be cached to give better performance.

Each table may have a single column that is defined with the IDENTITY

attribute. Some examples of using an identity column would be an order
number, employee number, stock number, or incident number. The values for
an identity column can be generated by DB2 using the clauses ALWAYS or BY
DEFAULT. Following is an example of this; see DB2 UDB SQL Reference,
SC09-2974 for more details:

•CREATE TABLE TAB1 (col1 INT, col2 INT, coluniq INT GENERATED ALWAYS AS
IDENTITY (START WITH 0, INCREMENT BY 1))

4.1.1.7 Generated columns
A generated column derives the values for each row from an expression,
rather than from an insert or update operation. Although an update or insert

At the time of writing, Identity Columns are not supported in an EEE
database with more than one partition. Please check the Release Notes for
availability of this feature for EEE databases.

Note
Chapter 4. Database design 91

trigger will produce a similar effect, the advantage of using a generated
column is that the value(s) derived are consistent with the expression used in
the CREATE TABLE or ALTER TABLE statements.

You can use generated columns to improve the performance of queries in
which the evaluation of a expression must be done many times, or if the
computation of the expression is complex. Query performance can be
improved more by creating indexes on the generated columns.

The GENERATED ALWAYS AS clause is used to create a generated column in a
table, and you include with this the expression to be used to create the
column. The GENERATED ALWAYS AS clause can be used with either the CREATE

TABLE or ALTER TABLE statements.

The following example shows an example which creates a table with two
regular columns COL1 and COL2 and a generated column COL3 which is derived
from the two regular columns.

CREATE TABLE TABLE1
(COL1 INT, COL2 INT, COL3 INT
GENERATED ALWAYS AS (COL1 - COL2))

Suppose that you now populate the table and wish to use the ALTER TABLE

statement to add a fourth column which is also a generated column. You must
first alter the table’s state by turning integrity checking OFF.

SET INTEGRITY FOR TABLE1 OFF

This needs to be done for TABLE1, as the table includes generated columns
which generate values based on other columns in the table. We can now add
another generated column to this table.

ALTER TABLE TABLE1
ADD COLUMN COL4 INT GENERATED ALWAYS AS
(CASE WHEN COL1 > COL2 THEN COL3 ELSE NULL END)

Now the new column has been added, we need to turn integrity checking
back ON.

SET INTEGRITY FOR TABLE1 IMMEDIATE CHECKED FORCE GENERATED

The FORCE GENERATED clause is used because TABLE1 includes generated
columns, and the values for the new column will be computed based on the
expression stored in the column.

For more detailed information on the SET INTEGRITY command, see the DB2
UDB SQL Reference, SC09-2974.
92 DB2 UDB V7.1 Performance Tuning Guide

Generated columns and indexes
Indexes can also be defined on generated columns. As an example, suppose
you have created a simple table and index using the following syntax:

CREATE TABLE TAB1 (NAME CHAR(20))
CREATE TABLE INX1 on TAB1(NAME)

Now let us assume that values were inserted in to the NAME column using both
uppercase and lowercase letter, so that when we ran the statement SELECT *

FROM TAB1, we saw the output as follows:

As you can see above, the values in the NAME column contain both uppercase
and lowercase lettering. Although this scenario might be unlikely in most
business applications, let us assume that you now want to perform another
select on the table but want the search to be case insensitive. In this case,
your application would run a statement such as SELECT * FROM TAB1 WHERE

LCASE(NAME)=’mark jones’. This query has a predicate with a specific value,
but the database manager cannot determine the start/stop index key value to
scan on the index. This is because each of all rows needs to be translated
into lower case by LCASE function, and then evaluated as to whether it is ’mark

jones’. This is not a problem if the TAB1 table is small; however, if it contains
thousands of rows, this processing cost would be considerably greater.

One solution would be to created a generated column which converted the
values stored in the NAME column to either uppercase or lowercase. Once this
was done, you could create a unique index on the generated column, as we
are allowed to define indexes on generated columns. To do this for the table
in our example, we would do the following, using the same principles
regarding SET INTEGRITY that we discussed earlier in this section:

SET INTEGRITY FOR TAB1 OFF;
ALTER TABLE TAB1 ADD COLUMN NAMECASE CHAR(20) GENERATED ALWAYS AS
(LCASE(NAME));
SET INTEGRITY FOR TAB1 IMMEDIATE CHECKED FORCE GENERATED;
CREATE UNIQUE INDEX IND1 ON TAB1 (NAMECASE);

SELECT * FROM TAB1

NAME

JON smith
mark JONES
SARAH THOMPSON
Simon Woods

4 record(s) selected.
Chapter 4. Database design 93

In this example, we first put the table in to the correct state to allow the
generated column to be added, we then add the column, turn integrity
checking back on and force the column to be populated with values using the
criteria in the ALTER TABLE statement. Finally, a unique index is created on the
generated column. This new index can then be utilized when the query is
issued which needs to perform case insensitive searches on names. The
SELECT * FROM TAB1 would now return the result set as follows:

Now you can re-write the query SELECT * FROM TAB1 WHERE LCASE(NAME)=’mark

jones’ to SELECT * FROM TAB1 WHERE NAMECASE=’mark jones’ so that the index
IND1 on the NAMECASE column can be used.

This example is used to simply demonstrate one of the ways in which using a
generated column can improve the performance of your applications or
queries. Although the generated column formula used was simple, this
example may provide ideas for how this column type could be used in your
environment.

4.1.1.8 Large objects, LONG data, and buffer pools
Where appropriate, consider using a larger page size and VARCHAR or
VARGRAPHIC data type instead of large objects (CLOB, DBCLOB) or LONG data
(LONG VARCHAR, LONG VARGRAPHIC). As has been stated previously in this chapter,
large objects and LONG data are not buffered in DB2's buffer pool(s), so you
will have to rely on the operating system’s filesystem cache for buffering.

4.1.2 LOB considerations
Large objects (LOBs) are mainly used to store data types such as audio,
video, and large drawings. This type of data will generally be too large to
store using the LONG VARCHAR or LONG VARGRAPHIC data types, which each have a
32K limit. DB2 supports three different LOB data types:

• Binary Large Object (BLOB)
Used to store binary strings with no associated code page.

SELECT * FROM TAB1

NAME NAMECASE
------------------- --------------------
JON smith jon smith
mark JONES mark jones
SARAH THOMPSON sarah thompson
Simon Woods simon woods

4 record(s) selected.
94 DB2 UDB V7.1 Performance Tuning Guide

• Character Large Object (CLOB)
Mostly used to store single byte character strings (mostly text) which are,
or could become too large for a VARCHAR.

• Double-Byte Character Large Object (DBCLOB)
Used to store a character string made up of double-byte characters; the
main type of data stored will be text information.

The LOB data types summarized above can be used to store data objects as
strings up to 2 GB in size. A single table row can contain up to 24 GB of LOB
data, and the table itself may hold a total of 4 TB of LOB data.

From a performance point of view, if you anticipate that you will be storing a
large amount of LOB data in your tables, then you may want to ensure that
you use DMS table spaces to hold these tables (SMS can also be used). The
advantage of using DMS is that you are able to specify an alternative table
space, using the LONG IN clause of CREATE TABLE. If using DMS, then use file
container types to hold your LOB data. Remember that LOB data is NOT
stored in the buffer pool, so by using the DMS file containers (or SMS table
space) you will benefit from the operating systems file system cache.

4.1.2.1 Logged or not logged
When using the CREATE TABLE statement, you define column attributes for that
table. If you are creating columns to be used for LOB data, then there is an
option to allow you to decide whether or not you want to log any changes
made to that LOB column. If you choose the LOGGED option, then any changes
made to the column will be logged by DB2, this means that changes are
recoverable. However, we do not advise using the LOGGED option for LOBs
greater than 10 MB (note that LOBs greater than 1 GB cannot be logged).
During database recovery, any “not logged” LOB data will be replaced with
binary zeros.

You can only specify an alternative table space to hold when the table is
first created

Note

To create strings greater than 1 GB using the BLOB, CLOB, or DBCLOB
data types, you must use the NOT LOGGED option in your column definitions.

Note
Chapter 4. Database design 95

4.1.2.2 Compact or not compact
Other LOB options available which will affect performance are the COMPACT or
NOT COMPACT clauses of CREATE and ALTER TABLE. If you define your LOB column
as COMPACT, then any values inserted into the LOB column will occupy minimal
disk space. To do this, the LOB data object is split into smaller segments.
Normally a LOB data objects is a 64 MB area split up into segments. Each
segment will be 1024 bytes in size or any power-of-two multiple of this value
(2048,4096 up to 64 MB). By using COMPACT, we can allocate smaller segments
than these and allocate the minimum required space (space used is rounded
to the nearest 1, KB). By allocating smaller segments, we now have very
limited free space in the LOB data object which could be used for any future
append operations. This could lead to a performance degradation when
performing this type of operation.

If you choose the NOT COMPACT option, then when you insert LOB data, some
free space is also inserted to assist in any future appends to this LOB data.
The NOT COMPACT option is the default option, and as most data defined as LOB
will be large in size, we would recommend using this default to take
advantage of the append performance improvement.

4.1.3 Creating tables
When creating tables, there are a number of decisions which need to be
made that will influence the performance of each table.

4.1.3.1 Which table spaces?
There are two main performance considerations when assigning tables to
table spaces: one is expected activity, and the other is expected size.
Obviously, these considerations will also be affected by any capacity planning
that you have done.

Expected activity is basically trying to understand how your table will be used,
if it will be heavily accessed and updated, if it will be read mostly, or if it will be
a table for historical/reference data that may be accessed only at certain
times of the year.

Try to categorize your tables and group them into table spaces accordingly.
For example, small infrequently accessed tables could be grouped together in
a single table space with a small buffer pool (or you could let them use the
default buffer pool). Larger tables which you expect to be heavily accessed
may be better in their own dedicated table space with its own buffer pool.

However, we are not recommending grouping all large tables in one table
space, as this would in most cases degrade performance. One example
96 DB2 UDB V7.1 Performance Tuning Guide

would be a mixed workload where you have two large base tables, one which
is updated only once per month but is used heavily for read-only queries, and
another large table which is updated frequently each day. These tables will
perform better in their own table spaces, as you will be able to configure each
table space for each type of table workload (DSS and OLTP) by setting an
appropriate extent size, prefetch size and using a suitable page size in each
case.

4.1.3.2 Why plan free space when creating tables?
Planning to maintain free space in your tables can affect the performance of
your database. That is to say, by not planning free space, you may see a
performance drop when inserting data into the table.

When you insert data, a default INSERT search algorithm is used by DB2 to
perform the inserts. The algorithm uses Free Space Control Records
(FSCRs) to find pages with enough space. Even if the FSCR finds a page
which has enough free space, the space may not be usable if it is "reserved"
by an uncommitted DELETE from another transaction. This is one of the main
reasons we recommend that applications COMMIT frequently to free this space.

Not all of the FSCRs in the table are searched when an insert is performed.
The DB2MAXFSCRSEARCH=N registry variable limits the number of FSCRs visited
for an insert (default=5).

After searching five FSCRs, if we have not found space, the INSERT is
simply appended to the end of the table. Once this happens, subsequent
inserts also append to the table until two extents are filled, then the search
process repeats. Each search then starts at the FSCR where the last search
ended.

Once the entire table has been searched, we append without searching until
space is created elsewhere in the table, via a DELETE, for example.

To ensure that you have free space on the data pages in your tables, use
ALTER TABLE PCTFREE <value> before a LOAD or REORG operation. This will ensure
that the percentage value specified for PCTFREE will be left on each page

You need to modify the value of DB2MAXFSCRSEARCH to balance insert speed
with space reuse. Large values optimize for space reuse. Small values
optimize for insert speed. Setting the value to -1 forces the database
manager to search all free space control records.

Note
Chapter 4. Database design 97

during the LOAD or REORG. Free space is important if you are going to consider
using clustered indexes, which are discussed later in this section.

Other search algorithm options are APPEND MODE and clustered indexes, which
are discussed in 4.1.3.3, “Why use append mode?” on page 98 and 4.2.4,
“Clustering indexes” on page 109.

Another consideration for having free space is overflow records. These are
created by updates that enlarge existing rows such that the row no longer fits
on its page; the record is then inserted on another page (with enough free
space). This is an overflow record. The original RID (Record Identifier) is then
converted to a pointer record, which contains the overflow record's RID.
However, indexes keep the original RID, which means that for overflow
records, an extra page read is required to access data — this degrades
performance.

Table reorganization (REORG) will eliminate overflow records.

4.1.3.3 Why use append mode?
Append mode is basically a search algorithm option used when inserting
data. This mode can be switched ON using the ALTER TABLE statement with
APPEND MODE clause; the default is OFF. If set to ON, then you must not have a
clustered index defined on the table, as data will be appended to the end of
the table and no free space information will be maintained. If append mode is
set back to OFF, make sure you reorganize the table to update the free space
information in the Free Space Control Records (FSCRs).

Since no free space information is maintained when append mode is used, if
records are deleted from the table whose append mode is on, this free space
will not be reused. Thus, you should use append mode for the tables which
only grow (for example, journals, history tables, and so on).

Where insert performance is a key criteria, then define your table with APPEND

MODE set to ON. New rows will be inserted at the end of the last extent, and no
searching for available space will be performed; neither will updates to FSCR
records.

There is one important consideration when using APPEND MODE set to ON.
Although inserts will be faster, more space will be needed (in most cases)
compared to using APPEND MODE set to OFF or by using a clustered index to try
to insert records on the same page as other records with the same index key
value.
98 DB2 UDB V7.1 Performance Tuning Guide

4.1.3.4 What about “in-place” reorg?
By running the REORG utility, we reorganize table data into a sequence
defined by one of your table’s indexes in an attempt to improve performance.
Because the REORG utility uses temporary tables which can be larger than
the base table being reorganized, temporary table spaces are normally used
to perform the reorganization. Another alternative, which will improve the
performance of table reorganization, is to try leave free space in your table
space.

If you leave enough free space in each table space to REORG the largest
table, then you will be able to perform the reorg "in-place" (in the same table
space). A performance benefit will be gained, because DB2 will not have to
copy the data to the temporary reorg files in the other table space and then
copy them back again to the base table. Remember, though, that the
temporary tables will still be larger than the base table, even if created in the
same table space.

In summary, for optimal performance, do the reorg "in-place" if you can spare
enough free space in the target table space.

4.1.3.5 Using NOT LOGGED INITIALLY
The NOT LOGGED INITIALLY option of the CREATE TABLE and ALTER TABLE

statements allows you to turn off logging for a table for that unit of work. A
table created using this option is commonly known as a “not-logged” table.
The table is still classed as a regular table and has an entry in the catalog
tables. When data is changed in the same unit of work as the CREATE TABLE

statement, in a “not-logged” table, then these changes are not logged. Once
a COMMIT statement is issued, the “not-logged” state is deactivated.

The “not-logged” state can be reactivated, by issuing the ALTER TABLE

statement with ACTIVATE NOT LOGGED INITIALLY option. Changes occurring in
the same unit of work as the ALTER TABLE statement are not logged.

If APPEND MODE is ON, then the PCTFREE value for the table cannot be greater
than zero.

Note
Chapter 4. Database design 99

Because the “not-logged” state is only active in the unit of work that was
generated by the CREATE TABLE or ALTER TABLE statement, only the application
that issued the CREATE TABLE or ALTER TABLE statement can access and change
the table without logging. During this unit of work, a Z table lock is held on the
table.

See the DB2 UDB Administration Guide: Implementation, SC09-2944 for
more information about the lock types of DB2 UDB.

Remember, if “not-logged” status is activated, any changes performed in this
unit of work cannot be rolled back. Moreover, you cannot recover “not-logged”
tables using roll-forward recovery. Therefore, you should activate
“not-logged” status when you can re-create the table, even though it is
damaged, for example, when you are:

• Creating a large table, using data from a source such as another table or
file, and you do not want the population of the new table logged.

• Creating a summary table using the REFRESH DEFERRED option and you do
not want the update by REFRESH TABLE statements to be logged.

To re-enable roll-forward recoverability of the table, it will have to be backed
up again as part of either a table space or database backup.

Note that the NOT LOGGED INITIALLY option does not imply better performance.
Although you can reduce logging overhead using this option, the data pages
changed must be flushed to disk at the commit time because changes are not
logged, and the commit can take a long time. If the buffer pool assigned to the
table space to which the table belongs is small, most of the changed pages
would have to be written to disk, and using the NOT LOGGED INITIALLY option
may improve performance. However, if the buffer pool is large enough for the
changed page not to be written to disk, using the NOT LOGGED INITIALLY option
may decrease performance. The NOT LOGGED INITIALLY option is intended to
overcome log space limitations. You may want to activate NOT LOGGED

INITIALLY if you want to perform large changes where normal logging would
give the log-full condition (SQL0964).

You can only use the ALTER TABLE statement to activate the “not-logged”
state if the table was originally created with the NOT LOGGED INITIALLY

option.

Note
100 DB2 UDB V7.1 Performance Tuning Guide

4.1.3.6 Declared temporary tables
Before DB2 UDB V7.1 (on UNIX, Windows, and OS/2), we supported two
basic physical tables. Most common was the “regular” or persistent table.
These tables exist in the database as entries in the system catalogs and
reside in a user defined table space. The other type of table is commonly
known as system temporary tables. These table types are created in a
temporary table space by the database manager when processes or the
optimizer require it. Use of these tables is restricted to the application that
generated the table and no entries exist in the system catalogs for these
tables. Temporary tables also only have a life span that lasts until the end of
the statement that generated them.

With DB2 UDB V7.1 we introduce a new type of temporary table known as a
declared temporary table. A declared temporary table is a temporary table
which is available externally to the users via SQL. However, from the
application perspective, only the application that creates the table may
access the table, and the table will exist as long as the application is
connected to the database.

These types of tables are very useful when you are running a complex SQL
query which needs to process large amounts of data. By creating
intermediate tables that are used to process the data and are then made
available for the duration of the applications connection, you reduce the need
to rebuild these intermediate tables; this results in a performance
improvement.

You can create a temporary table using the DECLARE GLOBAL TEMPORARY TABLE

statement. At this point the table will exist, but will contain no rows. This kind
of temporary table is called a declared temporary table.

A declared temporary table persists within the current application’s
connection and is dropped implicitly at the termination of the connection.
During the connection period, the application can select rows from the
declared temporary table, perform INSERT/UPDATE/DELETE statements without
logging (as no logging is performed on this table type), and even drop the
table explicitly. You can use declared temporary tables from the standard
SQL interfaces such as ODBC, CLI, and static/dynamic SQL.

Defining a declared temporary table
Here is an example of creating a declared temporary table (assuming the
application is connected to a database):

DECLARE GLOBAL TEMPORARY TABLE DTT1 (employee CHAR(12),salary int)
ON COMMIT RESERVE ROWS NOT LOGGED;
Chapter 4. Database design 101

This example creates a declared temporary table DTT1. The schema SESSION is
assigned when a declared temporary table is created. The ON COMMIT RESERVE
ROWS clause is used to allow the rows in the declared temporary table to
persist after a commit. The other clause you can specify is the ON COMMIT
DELETE ROWS clause (it is the default value). You are also required to specify
the NOT LOGGED clause. Note that other applications can create their own
declared temporary table called SESSION.DTT1 at the same time. Although
these are different tables, they can use the same table name because a
temporary table does not have any entries in the system catalog tables.

The following shows a simple example of how to manipulate the declared
temporary table we created.

First, a subset of the employee table is retrieved and inserted into the
declared temporary table DTT1. Notice that the schema name of the declared
temporary table is SESSION and the inserted rows are not logged. Then two
SELECT statements are performed for DTT1 before and after a COMMIT statement.
Both of them get the same result. The third SELECT statement after
reconnecting to the sample database would get an error (SQL0204), as the
declared temporary table DTT1 is dropped when the first connection was
terminated.

Before defining a declared temporary table space, you must create a user
temporary table space in advance using CREATE USER TEMPORARY TABLESPACE

statement. This is a new table space type introduced with DB2 UDB V7.1 to
allow greater control over the physical placement of this type of table.

Note

INSERT INTO SESSION.DTT1
SELECT employee,salary FROM employee WHERE salary>15000;

SELECT count(*) FROM SESSION.DTT1;

COMMIT;

SELECT count(*) FROM SESSION.DTT1;

CONNECT RESET;

CONNECT TO sample;

SELECT count(*) FROM SESSION.DTT1;
102 DB2 UDB V7.1 Performance Tuning Guide

Since any changes to a declared temporary table are not logged, when a
ROLLBACK statement is executed, the temporary table cannot go back to the
state of the last commit point. Instead, all rows of the temporary table are
deleted as if all rows were inserted during this unit of work. If the temporary
table was created in this unit of work, the table will be dropped. However, if
the temporary table was dropped in this unit of work, the table will be restored
without any rows.

4.1.3.7 Summary tables
Summary tables provide a useful way to improve the response time of
dynamic SQL queries. This type of table will typically be used to:

• Hold a frequently accessed subset of data

• Show a the result of a join between a group of tables

• Show an aggregate of data over multiple dimensions

Summary tables are mostly a lot smaller than the base fact tables from which
they were created. The REFRESH option specified when the summary table is
created determines when data in the table is updated. For more information
on the options available, refer to the DB2 UDB SQL Reference, SC09-2974.

The optimizer will access a summary table if it determines that the results for
the query can be satisfied by accessing data in the summary table instead of
accessing the base fact tables.

Enhancements to summary tables

There are a number of extensions in Version 7.1 to help in the use and
management of summary tables. In Version 7.1 a user can now:

• Use the refresh immediate option for a replicated table:
Starting with DB2 UDB V7.1, replicated summary tables can now be
created using the REFRESH IMMEDIATE option.

• Convert between a regular table (type 'T') and a summary table (type 'S'):
This can be done using the SET SUMMARY AS clause of the ALTER TABLE
statement. See the DB2 UDB SQL Reference, SC09-2974 for more detail.

• Refresh multiple tables concurrently:
You can specify multiple summary tables in a REFRESH TABLE statement
and the updates will take place concurrently.
Chapter 4. Database design 103

4.1.4 Table locks
Tables are one of the database objects that can be explicitly locked, others
being a database or table space. All other objects are implicitly locked, like
rows.

4.1.4.1 LOCKSIZE
LOCKSIZE is a table parameter that can be changed using the ALTER TABLE

statement. In DB2, tables use row locking by default; by using the LOCKSIZE

parameter you can override this. The options available allow you to set
default locking to be either row or table. The example below shows how to set
table level locking as the default.

ALTER TABLE db2inst1.table1 LOCKSIZE TABLE

In terms of applications, the previous ALTER TABLE statement would mean that
a share or exclusive lock would be acquired on the table; intent locks (except
intent none) are not used. By using this value you may improve the
performance of queries simply by limiting the number of locks that need to be
acquired. Do not forget, though, that the trade-off is concurrency; this could
be reduced, since all locks will be held over the whole table.

Use of this option in the table definition will not prevent normal lock escalation
from occurring.

4.1.4.2 LOCK TABLE or ALTER TABLE?
Like the LOCKSIZE parameter of the ALTER TABLE statement, the LOCK TABLE

statement can also be used to override the way locks are acquired on tables.
Howeve, when the LOCK TABLE statement is issued, the table is locked only
until the unit of work commits or is rolled back. The two locking modes
available are SHARE and EXCLUSIVE.

• Share mode:
In share mode, concurrent applications can only issue read-only
operations on the selected table.

• Exclusive mode:
In exclusive mode, concurrent applications cannot perform any operations
against the selected table. One exception to this is a situation where
application processes are using isolation level Uncommitted Read (UR),
which can execute read-only operations.
104 DB2 UDB V7.1 Performance Tuning Guide

4.1.5 Recovering dropped tables
Recoverability of individual tables can also impact performance. What we
mean here is the ability to be able to recover a table quickly in the event that
it was dropped accidentally.

Normally, the only way to recover a table is to restore from a database
backup, which, from a performance point of view, may not be desirable if your
database is very large and you have only dropped one table.

It is worth considering which tables in your database are the most important
— for example, those whose data is critical. For those tables, it might be
worth utilizing the dropped table recovery feature. This allows you to recover
a table by performing only a table space level restore and then rolling forward
through the logs. An obvious advantage here is speed and availability,
because the database is still accessible to users.

This functionality is enabled at the table space level and applies to regular
table spaces only. To find out which table spaces have this feature enabled,
you can run the following command when connected to your database:

SELECT TBSPACE,DROP_RECOVERY FROM SYSCAT.TABLESPACES

The DROP_RECOVERY column will indicate if this feature is enabled (Y) or
disabled (N). To enable the feature for a particular table space, run the
following command when connected to the database:

ALTER TABLESPACE USERSPACE1 DROPPED TABLE RECOVERY ON

For more information on this, please refer to the DB2 UDB Administration
Guide: Implementation, SC09-2944.

Once you have created your tables, it is worth extracting a copy of the DDL
for the tables in your database. This is good for reference and to help
recreate the table structure; for example, accidentally dropping a table when
you have no database backup. The DDL can be extracted using the db2look

command:

db2look -d <databasename> -a -e -o <outputfile> -m

See the DB2 UDB Command Reference, SC09-2951 for details on db2look

options.
Chapter 4. Database design 105

4.2 Indexes

An index is a list of the physical locations of rows sorted by the contents of
one or more specified columns of the base table. You can create indexes in
order to:

• Avoid unnecessary table scans

• Ensure uniqueness

• Provide ordering

• Avoid sorts

• Speed up frequently executed queries

• Speed up join predicates and support referential integrity

Indexes can reduce access time significantly; however, indexes can also
have adverse effects on performance. Before creating indexes, consider the
effects of multiple indexes on disk space and processing time:

• Each index takes up a certain amount of storage or disk space. The exact
amount is dependent on the size of the table and the size and number of
columns included in the index.

• Each INSERT or DELETE operation performed on a table requires
additional updating of each index on that table. This is also true for each
UPDATE operation that changes an index key.

Because of this trade-off (improved query performance versus longer
insert/delete/update times), you should take different indexing strategies
based on the type of workload that your database is tasked to perform. For
example, you should create fewer indexes on the OLTP tables on which the
insert/update rate is high, than on the DSS tables where queries
predominate.

When you create indexes, there are a number of options available to you,
which affect its performance. Here we will look at those which affect layout.

4.2.1 Separate table space for indexes?
One of the main reasons for separating your indexes from the data by placing
them in a separate table space is that you may wish to place them on faster
devices or you may wish to allocate them their own buffer pool.

However, before you do this, you should see the other recommendations on
when to separate data and indexes provided in 3.3.9.4, “Considerations for
separating data and indexes” on page 70.
106 DB2 UDB V7.1 Performance Tuning Guide

4.2.2 Free space
Index free space can be specified explicitly in the CREATE INDEX statement with
the use of PCTFREE. The value specified will used as the percentage of each
index leaf page to leave as free space. For non-leaf pages, the minimum of
the amount explicitly specified and 10% will be reserved.

In the following cases, you should choose a smaller value for PCTFREE, which
will save space and reduce index I/Os:

• The index is never updated.

• The index entries are in ascending order and mostly high-key values are
inserted into the index.

• The index entries are in descending order and mostly low-key values are
inserted into the index.

If you have indexes which get updated frequently, then a larger value would
be recommended to avoid index page splits.

Specifying a large value will also help ensure that there is enough free space
to maintain a clustered index if you have defined the index as such. With
clustering indexes DB2 attempts to keep the data in the same order as the
order specified by the index.

If a value of PCTFREE 25 was used, for example, then 25% of each index leaf
page would be kept as free space during initial index build or rebuild (as a
result of a load or reorg). PCTFREE can therefore help reduce the frequency of
index page splits, which will reduce performance. Usage of PCTFREE can also
reduce the need to reorganize the index.

Page splits reduce performance because they result in index pages no
longer being sequential or contiguous. The resulting effect is that the ability
to perform index page prefetching is reduced.

Note

An index can be reorganized by dropping it and recreating it, or by using
the REORG utility. The REORG utility is costly, but does ensure that index
pages are clustered, which benefits index scans.

Note
Chapter 4. Database design 107

4.2.2.1 On-line index reorg
Related to the PTCFREE clause of the CREATE INDEX statement is another clause
MINPCTUSED. This acts as a threshold for the minimum amount of used space
on an index leaf page. When free space on an index page hits the MINPCTUSED

value, for example, after an index key is deleted from an index leaf page, the
database manager attempts to merge the remaining keys with neighboring
pages. This mechanism is known as an on-line index reorg. An on-line index
reorg can improve space reuse and consequently reduce index I/Os. This
only happens when there is sufficient space on the neighboring page to allow
the merge to complete successfully. The empty page is then deleted.

Because enabling on-line index reorg causes the performance cost of
checking for space to merge each time a key deletion occurs, you should
enable on-line index reorg for an index when this overhead can be justified by
the benefit of better space utilization for the index.

The MINPCTUSED value should be set to less than one hundred (100). This
value becomes the reorganization threshold. We recommended a value for
MINPCTUSED which is less than 50 percent, since goal is to merge two
neighboring index leaf pages.

Index leaf pages freed following an on-line index reorg are available for
re-use. The restriction is that freed pages are only available to other indexes
in the same table.

Index non-leaf pages will not be freed following on-line index reorg. Full table
reorg will make the index as small as possible. Leaf and non-leaf pages will
be reduced in number, as will index levels.

If MINPCTUSED has a value of zero, on-line reorg of that index will not be
performed. Existing indexes with a zero value that require this feature will
have to be dropped and recreated to enable it. The value of MINPCTUSED can be
obtained from the SYSCAT.INDEXES system catalog table using the following
statement:

SELECT INDNAME,MINPCTUSED FROM SYSCAT.INDEXES

4.2.3 Include columns
We mention the INCLUDE clause of the CREATE UNIQUE INDEX statement, as it
can be used to increase the number of queries eligible for index-only access.
Index-only access improves the performance of the queries, since the base
table does not need to be accessed, and typically the base table size is much
larger than the index.
108 DB2 UDB V7.1 Performance Tuning Guide

You can use this clause to specify additional columns to be used as part of
the index but they are not part of the unique index key. When applications
issue queries, the include columns can be specified as regular index keys.

The only restrictions are that the columns selected must be distinct from
those columns used to enforce uniqueness, and the total select cannot be
more than 16 columns (the sum of which cannot be greater than 255 bytes).

4.2.4 Clustering indexes
The CLUSTER option of the CREATE INDEX statement specifies that the index is
the clustering index of the table. When using a clustered index, DB2 UDB
attempts to insert data using the index to find the location of the same or next
key, and then attempts to insert the data on the same page. By clustering the
data in this way, we improve the performance of operations such as prefetch
and range scans. Only one clustered index is allowed per table.

We can use a clustered index to try to optimize queries that retrieve multiple
records in index order. The result of clustering should be that fewer physical
I/Os are performed. When a clustered index is defined after a table exists,
then use ALTER TABLE PCTFREE <value> before performing any new LOAD or REORG
operations. By doing this, you will ensure that the percentage value specified
for PCTFREE will be left on each page during the LOAD or REORG. See the ALTER

TABLE statement in the DB2 UDB SQL Reference, SC09-2974 for more
information. By allocating this extra free space, we increase the probability
that the cluster insert algorithm can find free space on the desired page.

If you perform updates that considerably enlarge records, then we may get
pointer overflow records which degrade performance, as we then have rows
which no longer fit in their original data pages.

4.2.5 Index Advisor Wizard
The Index Advisor Wizard will determine the best set of indexes for a given
workload. A workload contains a set of weighted SQL statements that can
include queries as well as updates. The wizard will recommend which new
indexes to create, which existing indexes to keep, and which existing indexes
to drop.

A clustered index may not be defined for a table which is set to use
APPEND MODE. See the 4.1, “Tables and performance” on page 85 for
more information on APPEND MODE.

Note
Chapter 4. Database design 109

When the index advisor recommends indexes, these are not immediately
created; instead they are stored in an Explain table called ADVISE_INDEX.
Information can also be inserted into this table using the db2advis tool, which
we will look at shortly or manually using SQL.

The workload information which is considered by the Index Advisor Wizard is
stored in an additional Explain table ADVISE_WORKLOAD.

4.2.5.1 Using the Index Advisor Wizard
The Index Advisor Wizard can be invoked from the DB2 UDB Control Center
or by using the db2advis utility.

Control Center
To start the Index Advisor Wizard from the Control Center, you must first
highlight the Indexes folder for your database and then right-click to see the
Create menu as in Figure 20 below.

Figure 20. Index Advisor Wizard — starting from control center

In Figure 20, notice that by selecting the Indexes folder and right-clicking, we
can see the option, Create. From here, we choose the Index Using Wizard
option.
110 DB2 UDB V7.1 Performance Tuning Guide

We then see a screen like that shown in Figure 21. Here we define the
workload to be used by the Index Advisor Wizard, so that recommendations
can be made on what indexes we could create to minimize the total workload
cost. As you can see in Figure 21, a workload is a selection of SQL
statements which the database would normally have to process over a given
period. Statements in the workload can be added or removed as desired.
More than one workload definition can be created; each is stored in the
ADVISE_WORKLOAD table.

Figure 21. Index Advisor Wizard — defining workload

The next screen shown in Figure 22 allows the user to set a specific value for
the maximum disk space you wish to allocate for any new indexes. It is
recommended that a value be specified if disk space is scarce.

If you decide to set a disk space limit, be aware that the indexes
recommended may not be the most optimal for your workload, as the Index
Advisor Wizard may discard some indexes because they would exceed the
available disk space limit. If you want to see what could be created
regardless of disk space, do not set a limit.
Chapter 4. Database design 111

Figure 22. Index Advisor Wizard — setting index space limit

If your workload consists of many complex queries, then it may take some
time to calculate the recommended indexes. The screen shown in Figure 23
can be used to determine not only when the calculations will be performed,
but also the maximum amount of time they are allowed to run for.

By using a scheduled time, you can allow the index advisor to run at a time
when database resources are not being fully utilized (such as at night or on a
weekend). You can also limit the length of time the wizard can run, thereby
limiting execution time to a set window.

If you do specify a time limit in which the wizard can run, then the index
recommendations made may not be the most optimal, as the wizard may not
have been allowed the time required to calculate the best indexes for your
workload.

However, if the results are returned before the time limit, then assume that
these are the most optimal recommendations that the wizard was able to
make.
112 DB2 UDB V7.1 Performance Tuning Guide

Figure 23. Index Advisor Wizard — select calculation time

Once the Index Advisor Wizard has completed, you will see a screen similar
to that shown in Figure 24. We can see here that the wizard has
recommended that two indexes could be created to help minimize the overall
cost of this workload on the databases resources. For each index, we can
see the table the index was created against, what columns were used to
create the index, and what the disk space requirements to hold the index will
be. We can also change the index name from this screen.

At the bottom of the screen is a section called Workload performance, which
shows the improvement in workload duration time, if the new indexes are
created. The values show are measured in timerons. Timerons do not
correlate directly to any specific unit of elapsed time, but provide an estimate
of the resources required by the database manager to execute the queries
within the workload. Resources would include CPU (instructions required)
and I/O (page transfers and seeks required).
Chapter 4. Database design 113

Figure 24. Index Advisor Wizard — choosing indexes to create

In Figure 25, we can see which indexes the wizard flagged as being unused
during the execution of the workload. Do not remove indexes unless you are
sure that they are not required by other applications or workloads.

Figure 25. Index Advisor Wizard — choosing indexes to remove
114 DB2 UDB V7.1 Performance Tuning Guide

The results screen, Figure 26, shows a summary of the selections we have
made; these include which indexes to create, existing indexes to keep, and
indexes to remove. At this point you can save the actions to a script (shell
script or DB2 script), and also carry them out immediately or schedule them
to run later.

Figure 26. Index Advisor Wizard — review results

The db2advis utility
You can use the db2advis utility from the command line. It works in the same
way as the Index Advisor Wizard. For detailed information on running the
db2advis utility, refer to the DB2 UDB Command Reference, SC09-2951.

Before running the Index Advisor Wizard or the db2advis utility against a
database, ensure that the Explain tables have been created for that
database. Run db2 -tf EXPLAIN.DDL against the database to create these
tables. EXPLAIN.DDL is found in the sqllib/misc directory in the instance
owner’s home directory

Note
Chapter 4. Database design 115

4.2.6 Other performance tips for indexes
Here are some other performance tips for indexes:

• Execute RUNSTATS utility after creating indexes.

Whenever you create new indexes, do not forget to execute the RUNSTATS

utility to update the statistics information after the index creation. This
provides the optimizer with accurate information on the indexes and
makes the optimizer determine the best access plan.

• Choose a suitable configuration (SORTHEAP and buffer pool size) for index
creation.

When tuning index creation performance, the amount of memory
dedicated to the sorting of index keys is controlled by the SORTHEAP

database configuration parameter. If an index is so large that it cannot be
sorted in memory, a sort spill occurs. That is, the data is divided among
several "sort runs" and stored in a temporary table space that will be
merged later. For the optimal performance of the index creation, you
should avoid a sort spill by tuning the SORTHEAP database configuration
parameter.

• The buffer pool size is also the important factor of the index creation
performance.

A index creation needs to retrieve data pages for the index keys from the
base table, and also build and save index pages. To minimize the amount
of disk storage I/O caused by these data pages reading and index pages
writing, the buffer pool for the table space to which the base table and
indexes belong should be large enough. If the index key sort causes a sort
spill, it is also important that the buffer pool for temporary table spaces be
large enough to minimize the amount of disk I/O that spilling causes.

• Build indexes as a part of the load operation.

If you are trying to load data into an empty table (or a table with few rows)
and intend to create indexes on the table, you should create indexes first,
then execute the LOAD utility. The CREATE INDEX statements will be
completed in a second since the table is empty, then the LOAD utility will
build the indexes as part of the load operation. This is more efficient than
doing the index creation separately after the load is done, because the
index keys do not have to be retrieved from the base table. If doing the
indexes creation separately, each CREATE INDEX statement must scan the
base table and retrieve the index keys.
116 DB2 UDB V7.1 Performance Tuning Guide

When you perform the LOAD utility using the REPLACE option, you can specify
the STATISTICS YES option and collect the statistics information of the base
table and indexes on it. This is a faster alternative than executing the
RUNSTATS utility after the LOAD statement is completed.

• Try to keep the index key size as small as possible.

Remember that each INSERT, DELETE or UPDATE operation which changes an
index key performed on a table requires additional updating of each index
on that table. If the index key size is bigger, then this overhead is also
bigger.

• Index creation is improved using intra-parallelism.

If the database is on an SMP machine, consider setting the INTRA_PARALLEL

database manager configuration parameter to YES or SYSTEM to take
advantage of parallel performance improvements. Multiple processors can
be used to scan and sort data for index creation.

4.3 64-bit engine

Starting with the first FixPak of the DB2 UDB V7.1, a new functionality, the
64-bit database engine, will be introduced. Taking advantage of a 64-bit
address space will allow for the creation of:

• Larger buffer pools

• Larger sort heap

• Larger package caches

• Other resources that can consume large amounts of memory

• Utilization of additional memory that could improve performance by
reducing I/O operations

• UDF enhancement

AIX and Solaris are the systems for which 64-bit DB2 UDB support is initially
targeted. For other operating systems, 64-bit support will follow.
Chapter 4. Database design 117

4.3.1 Libraries
In addition to the specific advantages highlighted above, a secondary but
very important consideration is that, in order to allow DB2 application
developers to use a 64-bit address space, they need to have available to
them 64-bit DB2 libraries. This is due to the fact that, although 64-bit
platforms allow both 32-bit and 64-bit processes to co-exist, they do not
allow intermixing of 32-bit and 64-bit executables and libraries within the
same process.
118 DB2 UDB V7.1 Performance Tuning Guide

Chapter 5. Monitoring tools and utilities

Understanding your database and applications helps you tune your database
and improve its performance. To do this, you may need to monitor your
database system to gather performance and statistical information about the
operations and tasks that are executing.

This chapter describes how to monitor the system resource usage using AIX
commands such as iostat and vmstat. It also discusses the different methods
available to monitor the database activity, using tools such as the Snapshot
Monitor, the Event Monitor, the Performance Monitor, and the
CLI/ODBC/JDBC Trace Tool. Based on the information provided by these
commands and tools, you can make informed decisions about what actions
need to be taken to tune the database environment.

We have developed some sample shell scripts that execute these commands
and tools, and extract the useful information from the output. These scripts
are shown in Appendix A, “Sample scripts” on page 335. You can use them
as we show in this chapter, or modify them appropriately for your
environment.

5.1 Measuring and monitoring

The results obtained when testing or benchmarking can be split into two
different categories:

• Attributes being measured

Usually, the response time is the only measured attribute. But any other
metric, such as a throughput, may be the target.

• Attributes being monitored

These attributes show the behavior of the database during the test. For
example, you may be interested in the disk I/O, memory or CPU activity.
AIX provides a variety of commands and tools to monitor each of the
system resource activities. From the DB2 perspective, you may be
interested in the way pages are being accessed through prefetchers, or
the watermark of a heap left by the execution of a test. DB2 provides a
variety of tools for this purpose.

When measuring and monitoring, each step of the test should be carefully
considered. The method you are going to use to measure must be clearly
established. You should be aware that the measuring and monitoring activity
may have some affect on the results obtained. Previous steps of the test, or
© Copyright IBM Corp. 2000 119

previous tests, may also have an impact, because pools and caches are not
flushed unless you take steps to guarantee a clean measure.

Take measurements while the system is active and performance problems
are evident. If no performance problems are currently evident, you may
investigate potential problems and take some initial measurements to
document a “stable” state. You may then set up some monitoring to be
performed automatically, or instruct an administrator or user to take
measurements while you are away. Keep in mind that Event and Snapshot
Monitors do take up their own resources, and should be turned off after the
tuning process is complete.

5.2 Maintaining tuning information

Reports of the results should be kept for future performance references.
Performance is a relative issue, and progress is best tracked based on
previous performance issues. It makes sense to define what information
should be kept in a performance report. Reports should include not only
the results, but also the configuration parameters, the environment, and
values of other monitored attributes.

As mentioned at the beginning of this chapter, we have written some sample
shell scripts which execute AIX commands or DB2 monitoring tools. These
scripts save the output to files in the directory structure which we believe is
helpful in maintaining order. See Appendix A, “Sample scripts” on page 335
for the source files and the syntax of all the scripts. You can use them to
maintain your monitoring report or get some ideas for your environment from
these scripts. The directories will be defined in any user’s home directory,
and are outlined below.

The directory structure which our sample scripts will use is shown in Table 9.

Table 9. Suggested directory structure for maintaining point-in-time results

Directory Purpose Stored files

~/work Scripts used for monitoring sqlcache.ksh
mon_stmt.ksh

~/queries Queries used to test performance or SQL
statements which have been captured
from packages.

1.sql
54.sql

~/states Hold directories representing different
points in time. Zero should be for the initial
state, before tuning.

0-n
120 DB2 UDB V7.1 Performance Tuning Guide

Most of our sample scripts have a parameter -o which accepts a number
indicating the subdirectory where output should be placed under either the
~/states or ~/results directories. If the output file already exists there (the
utility has been run with the same parameters), then the older file is copied to
a subdirectory bak with a slightly different filename (the PID number will be
attached to it). If any of the directories do not exist, it will be created.

Another standard which we have tried to maintain is that all of the scripts will
force you to enter a comment which is placed in the beginning of the
summary output (report) file; for example, "RUN BEFORE INDEX
CREATION" or "FIRST EXECUTION AFTER DB2START". The run date and
script parameters (invocation) are also put in the beginning of the summary
output file.

The following sections show each directory in the directory structure which
our sample shell scripts will use. You do not have to use our sample scripts or
exactly the same directories to save monitored data. However, we
recommend that you keep any performance monitoring results for tracking
the system performance and also for future performance references.

~/states/0-n Each subdirectory should contain output
files showing different values at a given
point in time.

dbm_cfg.sql
db_cfg_TPC.sql
reorgchk_all.out

~/states/0-n/
bak

Output files are never over-copied. They
are moved to here with a unique name.

dbm_cfg.sql.1234
5

~/results Hold directories representing different
points in time. Zero should be for the initial
state, before tuning.

0-n

~/results/0-n Each subdirectory should contain output
files of measurements and monitors at a
given point in time.

1.out, 1.sum
sqlcache.out
sqlcache*.sum

~/results/0-n/bak Output files are never over-copied. They
are moved to here with a unique name.

1.sum.12345

~/diff A useful command to compare states or
results is diff. Outputs should be kept here.

q2_r20_r21.diff

Directory Purpose Stored files
Chapter 5. Monitoring tools and utilities 121

5.2.1 States subdirectory
When first approaching a system which may need to be tuned, you should
document the values of various setting and parameters. These may be
operating system settings such as paging space, or database parameters
such as those in the database configuration file.

In our set of suggested directories, a new subdirectory, whose name is a
number, should be created in the ~/states directory. Before modifying any
settings or parameters, all of the state-type output files should be saved to
this new directory. The types of DB2 and operating system information which
should be saved in this directory could include:

• Values of the database manager configuration parameters

• Values of the database configuration parameters

• Output of the REORGCHK (with CURRENT STATISTICS) command

• Current monitor switches status

• Defined and active Event Monitors

• Schema (DDL) and statistics information from db2look

• Existing tables and indexes (including basic statistics)

• DB2 registry variables (db2set -all)

• Installed software set (lslpp -L)

• Results of lsps (paging space) and any of the other UNIX monitors
mentioned in this chapter

After making a modification to a setting or tunable parameter, another
subdirectory for the new state, whose name is the next number, should be
created under ~/states, and the file which might have been affected should be
regenerated in this new directory. Modifications may include:

• Modifying the database or database manager configuration parameters

• Adding or removing indexes

• Performing RUNSTATS or REORG TABLE command

• Adding memory or modifying the paging space

The following example shows a sample SQL statement to obtain information
on existing tables. You should get and save this information:
122 DB2 UDB V7.1 Performance Tuning Guide

The result will be like the following:

The following example shows a sample SQL statement to obtain information
on existing indexes. You should get and save this information:

SELECT CAST(tbspace || ’.’ || tabschema || ’.’ || tabname AS CHAR(40))
AS

table
, index_tbspace
, SUBSTR(CHAR(create_time), 1, 19) AS create_time
, tableid
, type
, status
, card
, overflow
, pctfree AS PCFREE
, SUBSTR(CHAR(stats_time), 1, 19) AS stats_time
FROM syscat.tables
WHERE tabschema NOT IN (’SYSIBM’, ’SYSCAT’, ’SYSSTAT’)
AND tabname NOT LIKE ’EXPLAIN_%’
AND tabname NOT LIKE ’ADVISE_%’

ORDER BY table;

TABLE INDEX_TBSPACE CREATE_TIME
TABLEID TYPE STATUS CARD OVERFLOW PCFREE STATS_TIME
-- ------------------ -------------------
------- ---- ------ -------------------- ----------- ------ -------------------
TPCDDATA.DB2INST1.CUSTOMER TPCDINDEX 2000-05-05-19.24.31

11 T N 150000 0 -1 2000-05-31-21.46.55
TPCDDATA.DB2INST1.LINEITEM TPCDINDEX 2000-05-05-19.24.29

7 T N 6001215 0 -1 2000-05-10-20.04.14
TPCDDATA.DB2INST1.NATION TPCDINDEX 2000-05-05-19.24.29

8 T N 25 0 -1 2000-05-12-17.10.53
TPCDDATA.DB2INST1.ORDERS TPCDINDEX 2000-05-05-19.24.30

9 T N 1500000 0 -1 2000-05-10-20.05.21
TPCDDATA.DB2INST1.PART TPCDINDEX 2000-05-05-19.24.27

4 T N 200000 0 -1 2000-05-12-17.10.08
TPCDDATA.DB2INST1.PARTSUPP TPCDINDEX 2000-05-05-19.24.28

5 T N 800000 0 -1 2000-05-12-17.10.52
TPCDDATA.DB2INST1.REGION TPCDINDEX 2000-05-05-19.24.28

6 T N 5 0 -1 2000-05-12-17.10.53
TPCDDATA.DB2INST1.SUPPLIER TPCDINDEX 2000-05-05-19.24.30

10 T N 10000 0 -1 2000-05-10-20.07.45

8 record(s) selected.
Chapter 5. Monitoring tools and utilities 123

The result will be like the following:

SELECT
CAST(tabschema || ’.’ || tabname AS CHAR(30)) AS table

, indname
, indextype
, SUBSTR(CHAR(create_time), 1, 19) AS create_time
, CAST(colnames AS CHAR(79)) AS columns
, TRANSLATE(CHAR(’ ’,30), ’-’, ’ ’) AS seperator
, clusterratio

-- , clusterfactor
, pctfree
, uniquerule AS uniquer
, SUBSTR(CHAR(stats_time), 1, 19) AS stats_time

FROM
syscat.indexes

WHERE
tabschema != ’SYSIBM’

AND
tabname NOT LIKE ’EXPLAIN%’

ORDER BY
table

, uniquerule DESC
, columns;

TABLE INDNAME INDEXTYPE CREATE_TIME
COLUMNS
SEPERATOR CLUSTERRATIO PCTFREE UNIQUER STATS_TIME
------------------------------ ------------------ --------- -------------------

------------------------------ ------------ ------- ------- -------------------
DB2INST1.CUSTOMER C_NK_CK REG 2000-05-10-19.51.43
+C_NATIONKEY+C_CUSTKEY
------------------------------ 55 -1 U 2000-05-31-21.46.55
DB2INST1.CUSTOMER C_MS_CK REG 2000-05-10-19.51.34
+C_MKTSEGMENT+C_CUSTKEY
------------------------------ 91 -1 D 2000-05-31-21.46.55
DB2INST1.LINEITEM L_OK REG 2000-05-10-22.50.27
+L_ORDERKEY
------------------------------ -1 -1 D -
DB2INST1.LINEITEM L_PK REG 2000-05-10-22.52.24
+L_PARTKEY
------------------------------ -1 -1 D -
DB2INST1.LINEITEM L_PKSKOKEPDSQN REG 2000-05-10-22.54.24
+L_PARTKEY+L_SUPPKEY+L_ORDERKEY+L_EXTENDEDPRICE+L_DISCOUNT+L_QUANTITY
------------------------------ -1 -1 D -
124 DB2 UDB V7.1 Performance Tuning Guide

5.2.1.1 The db2look tool
The db2look tool can be used to extract the Data Definition Language (DDL)
which can be used to redefine database objects. This makes it a useful tool
for documenting the definitions of a database. The types of information which
can be extracted include:

• Table spaces
• Buffer pools
• Tables and views
• Indexes
• Constraints
• Triggers
• Privileges
• Statistics
• Database Configuration parameters (partial)
• DB2 Registry values (partial)

See the Command Reference, SC09-2951 for more details about db2look.
The parameters which offer the most complete information are:

db2look -d dbname -m -l -a -x -e -f

Sample script
We have written the sample shell script, db2look.ksh. This script can be used
to execute db2look with default parameters and place the output in a states

subdirectory. It also places a comment at the beginning of the script which is
generated. The following example shows a sample invocation:

The source file and the complete syntax of this sample script are included in
Appendix A, “Sample scripts” on page 335.

In this sample invocation, the output file will be ~/states/1/db2look_TPC.sql.
The following example shows the beginning of the generated script:

$ db2look.ksh -c "FIRST LOOK" -d tpc -o 1
[Created: /home/tetsur3/states/1/bak/db2look_TPC.sql.32062]
[Creating: /home/tetsur3/states/1/db2look_TPC.sql]
% Generate statistics for all creators
% Creating DDL for table(s)
% Running db2look in mimic mode
Chapter 5. Monitoring tools and utilities 125

The upd_cfg.ksh script
Another example of the type of information which should be saved (in the
~/states directory) prior to making any tuning changes is the values of the
database manager and database configuration parameters. We have written
the sample script upd_cfg.ksh, which executes a GET DBM CFG or GET DB CFG

command and save the output, at the same time generating a script file which
can return all of the parameters to their current value. The generated script
can be executed by using the db2 -tvf command. In this way, if you
experiment with a number of different tunable parameters (not recommended
in general), then you can always return to the values (state) which were
saved in this script.

The following example shows a sample invocation of the upd_cfg.ksh script,
and the type of script which is generated. This generated script can be
executed as db2 -tvf ~/states/1/db_cfg_TPC.sql to restore these values:

$ head -26 ~/states/1/db2look_TPC.sql
-- FIRST LOOK
-- --
-- Invocation: db2look.ksh -c FIRST LOOK -d tpc -o 1
-- Thu Jun 1 22:22:48 PDT 2000
--
-- db2look -d TPC -m -l -a -x -e -f
--
-- This CLP file was created using DB2LOOK Version 7.1
-- Timestamp: Thu Jun 1 22:22:48 PDT 2000
-- Database Name: TPC
-- Database Manager Version: DB2/6000 Version 7.1.0
-- Database Codepage: 819

CONNECT TO TPC;

-- DDL Statements for BUFFERPOOLS --

CREATE BUFFERPOOL "TPCDDATABP" SIZE 5000 PAGESIZE 8192 NOT EXTENDED STORAGE;

CREATE BUFFERPOOL "TPCDTEMPBP" SIZE 10000 PAGESIZE 8192 NOT EXTENDED STORAGE;

CREATE BUFFERPOOL "TPCDINDEXBP" SIZE 5000 PAGESIZE 8192 NOT EXTENDED STORAGE;
126 DB2 UDB V7.1 Performance Tuning Guide

If you want to obtain the database manager configuration parameters, simply
leave out the -d parameter. The source file and the complete syntax of this
sample script are included in Appendix A, “Sample scripts” on page 335.

$ upd_cfg.ksh -c "BEFORE CHANGES" -o 1 -d tpc
$ head -45 ~/states/1/db_cfg_TPC.sql
-- BEFORE CHANGES
-- --
-- Invocation: /home/tetsur3/work/upd_cfg.ksh -c BEFORE CHANGES -o 1 -d tpc
-- Wed May 31 20:14:17 PDT 2000
--
-- db2 get db cfg for TPC
--
UPDATE DB CFG FOR TPC USING
-- Database Configuration for Database TPC
--
-- Database configuration release level = 0x0900
-- Database release level = 0x0900
--
-- Database territory = US
-- Database code page = 819
-- Database code set = ISO8859-1
-- Database country code = 1
--
-- Dynamic SQL Query management (DYN_QUERY_MGMT) = DISABLE

DYN_QUERY_MGMT DISABLE
--
-- Directory object name (DIR_OBJ_NAME) =

DIR_OBJ_NAME ’’
-- Discovery support for this database (DISCOVER_DB) = ENABLE

DISCOVER_DB ENABLE
--
-- Default query optimization class (DFT_QUERYOPT) = 5

DFT_QUERYOPT 5
-- Degree of parallelism (DFT_DEGREE) = 1

DFT_DEGREE 1
-- Continue upon arithmetic exceptions (DFT_SQLMATHWARN) = NO

DFT_SQLMATHWARN NO
-- Default refresh age (DFT_REFRESH_AGE) = 0

DFT_REFRESH_AGE 0
-- Number of frequent values retained (NUM_FREQVALUES) = 10

NUM_FREQVALUES 10
-- Number of quantiles retained (NUM_QUANTILES) = 20

NUM_QUANTILES 20
--
-- Backup pending = NO
--
-- Database is consistent = NO
-- Rollforward pending = NO
-- Restore pending = NO
Chapter 5. Monitoring tools and utilities 127

5.2.2 Queries subdirectory
As part of the tuning process, it might be necessary to experiment on a
number of specific SQL statements. These queries could be provided to you,
or you may have to extract them from various monitors. For example, the
sqlcache.ksh script, which we will introduce later, extracts SQL statements
from the Dynamic SQL Statement cache and places them in the queries

directory. The queries could then be analyzed more carefully, for example,
with the db2batch or Explain tools (discussed in this chapter).

5.2.3 Results subdirectory
The types of files which should be placed in the ~/results subdirectories are
the outputs of utilities like db2batch, Explain, monitors (all covered in this
chapter) and some SQL queries. Most of the utilities mentioned in this
chapter save their results in this subdirectory (a number, under ~/results).

For example, the sqlcache.ksh utility saves the output of a Snapshot Monitor,
and a summary of it as specified by parameters, in a subdirectory under
~/results. (Optionally, it could save it in the current directory.)

5.3 AIX monitoring tools

The AIX operating system provides a variety of commands and tools to
monitor the system resource activities. Here we introduce some useful
commands. See Appendix A for more AIX commands.

5.3.1 Online monitor — nmon
The nmon monitor is not included in the AIX software (or performance pack). It
is available at:

http://w3.aixncc.uk.ibm.com

It is also available to IBM Business Partners via PartnerInfo.

Parameters which are calculated by default, such as PCKCACHESZ (which
defaults to MAXAPPLS*8), are set to -1 to force the recalculation.

Note
128 DB2 UDB V7.1 Performance Tuning Guide

As shown in Figure 27, nmon is a graphical tool which shows a variety of
elements in real-time, such as CPU, disk, memory and process information.
While it is an extremely useful tool for performing an overall on-line checkup
of your system, its one drawback is that you cannot save the monitored
information (actually, there is a way, but we did not find it to be too useful).

For example, once a process has completed spiking its CPU usage (and
thereby coming to the top of the list), it might quickly drop down the list of
processes, leaving you wondering what exactly it was that you saw. On the
other hand, indicators such as CPU and Disk do have a peak marker which
clearly shows the highest values which were hit during monitoring. It is also a
very simple tool that can be used to display the parallel activity of multiple
CPUs. However, one disadvantage is that the process list only shows the
names of the parent processes.
Chapter 5. Monitoring tools and utilities 129

Figure 27. Sample of nmon with all elements displayed

During the remainder of this chapter, we will not discuss using nmon. Instead,
we will concentrate on non-graphical monitoring tools whose output can be
saved and summarized into files and placed in the results directory.
130 DB2 UDB V7.1 Performance Tuning Guide

5.3.2 Virtual memory statistics — vmstat
You can use the vmstat command to report statistics about kernel threads in
the run and wait queues, memory, paging, disks, interrupts, system calls,
context switches, and CPU activity. If the vmstat command is used without
any options, or only with the interval (and optionally, the count parameter, like
vmstat 2), then the first line of numbers is an average since system reboot.

The following example shows a sample invocation of the vmstat command.
The output is 10 lines with 2 seconds between outputs.

5.3.3 Disk I/O statistics — iostat
The iostat tool is installed with the base operating system (AIX). It is useful
for displaying basic average CPU statistics (although it only shows the
average of all CPUs, without breaking them down) and disk transfers for each
physical drive. It is enough to provide it with one parameter, which is the
reporting interval. You can then stop it by pressing "Ctrl-C", or optionally
specify the number of outputs. Note that the first entry of iostat should be
ignored, as it gives the cumulative values since the last boot. The following
example shows a sample invocation of the vmstat command:

vmstat 2 10
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 44720 192928 0 0 0 0 0 0 103 66 11 0 0 99 0
1 1 44720 192928 0 0 0 0 0 0 785 1133 1115 34 3 39 24
0 1 44720 192928 0 0 0 0 0 0 770 1156 1085 33 2 40 26
0 1 44720 192928 0 0 0 0 0 0 762 1054 1040 32 2 38 28
0 1 44720 192928 0 0 0 0 0 0 773 1057 1078 33 2 41 24
0 1 44720 192928 0 0 0 0 0 0 757 1068 1042 33 2 40 25
1 1 44720 192928 0 0 0 0 0 0 773 1072 1053 34 2 39 26
1 1 44720 192928 0 0 0 0 0 0 777 1063 1065 33 1 39 26
2 1 44720 192928 0 0 0 0 0 0 755 1050 1034 32 2 43 24
4 1 44720 192928 0 0 0 0 0 0 760 1090 1056 34 2 41 23
Chapter 5. Monitoring tools and utilities 131

5.3.3.1 iostat.ksh script
Because iostat displays a little more information than we want, and because
the list of disk activity is listed vertically, we have written a script which traps
iostat output and displays only part of the information horizontally, making it
easier to track changes in activity. The output of the iostat.ksh script is saved
under the results directory. Following is an example of how iostat.ksh is
used to monitor activity:

iostat 2

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.1 14.5 7.6 0.2 92.2 0.1

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 0.0 0.2 0.0 60652 23460
hdisk0 0.2 1.1 0.2 170797 465727
hdisk2 0.0 0.0 0.0 0 0
hdisk3 0.0 0.0 0.0 0 0
hdisk5 0.0 0.0 0.0 0 0
hdisk4 0.2 38.4 1.0 21321125 88328
cd0 0.0 0.0 0.0 0 0

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.0 333.6 0.0 0.2 99.8 0.0

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 0.0 0.0 0.0 0 0
hdisk0 0.0 0.0 0.0 0 0
hdisk2 0.0 0.0 0.0 0 0
hdisk3 0.0 0.0 0.0 0 0
hdisk5 0.0 0.0 0.0 0 0
hdisk4 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.5 352.1 2.5 3.2 75.2 19.1

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 1.5 20.0 2.0 0 40
hdisk0 2.5 11.5 3.0 0 23
hdisk2 0.0 0.0 0.0 0 0
hdisk3 0.0 0.0 0.0 0 0
hdisk5 0.0 0.0 0.0 0 0
hdisk4 55.9 273.7 68.4 16 532
cd0 0.0 0.0 0.0 0 0
132 DB2 UDB V7.1 Performance Tuning Guide

The source file and the complete syntax of this sample script are included in
Appendix A, “Sample scripts” on page 335.

5.3.4 List paging space — lsps
To check paging activity of the operating system, use the AIX command
lsps -a. This command shows how much paging space has been defined,
and how much is being used at the moment, as follows:

Another way to see this information is to use the nmon utility (see 5.3.1,
“Online monitor — nmon” on page 128).

5.3.5 Process state — ps
To check which processes of DB2 are running, use the AIX command ps. Use
ps -ef | grep db2 to see all of the process. Or use ps -ef | grep db2agent

to see agents which are idle, handling a database connection or an instance
connection. Figure 28 shows a sample invocation of the ps command and an
explanation of the processes.

$ iostat.ksh -c "FIRST EXECUTION" -o 26 -s 1
[Created: /home/tetsur3/results/26/bak/iostat_11.out.39538]
[Created: /home/tetsur3/results/26/bak/iostat_110.sum.39538]
[Creating: /home/tetsur3/results/26/iostat_110.sum]
FIRST EXECUTION
--
Invocation: iostat.ksh -c FIRST EXECUTION -o 26 -s 1
Fri Jun 2 02:51:03 PDT 2000

Hit Ctrl-C to stop...
[Creating: /home/tetsur3/results/26/iostat_11.out]
Waiting for disk i/o ...
-IOWAIT----hdisk0---
W 1.8| 124
-IOWAIT----hdisk0----hdisk1----hdisk4---
W 2.8| 24| 12| 32
R 13.2| | | 2625
R 11.5| | | 3712
W 11.5| 100| |
R 3.8| | | 4152
R 3.0| 8| | 1552
W 3.0| 116| |
W 0.5| 40| |
W | 8| |

lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd6 hdisk0 rootvg 1024MB 1 yes yes lv
Chapter 5. Monitoring tools and utilities 133

Figure 28. DB2 processes

5.4 DB2 UDB tools

DB2 UDB provides several tools that can be used for monitoring or analyzing
your database. In this section we discuss these monitoring and analyzing
tools, which are used for the following purposes:

• Snapshot Monitor
Capturing performance information at periodic points of time.

• Event Monitor
Providing a summary of activity at the completion of events such as
statement execution, transaction completion, or when an application
disconnects.

• Explain Facility
Providing information about how DB2 will access the data in order to
resolve the SQL statements.

• db2batch tool
Providing performance information (benchmarking tool).

ps -ef | grep db2
db2as 6054 12646 0 09:44:29 - 0:00 db2gds
db2as 12646 15008 0 09:44:29 - 0:00 db2sysc
root 15008 1 0 09:44:28 - 0:00 db2wdog
root 15294 1 0 16:14:49 - 0:00 db2wdog

db2as 15996 12646 0 09:44:29 - 0:00 db2ipccm
db2as 16254 6054 0 09:44:29 - 0:00 Scheduler
db2as 16512 12646 0 09:44:29 - 0:00 db2tcpcm
db2as 16770 12646 0 09:44:29 - 0:00 db2tcpcm
db2as 17028 12646 0 09:44:29 - 0:00 db2tcpdm

db2inst1 17288 17546 0 16:14:49 - 0:00 db2gds
db2inst1 17546 15294 0 16:14:49 - 0:00 db2sysc
db2inst1 17804 17546 0 16:14:50 - 0:00 db2tcpcm
db2inst1 18062 17546 0 16:14:50 - 0:00 db2tcpcm
db2inst1 18320 17546 0 16:14:49 - 0:00 db2ipccm
db2inst1 18578 17288 0 16:14:51 - 0:00 db2srvlst
db2inst1 18836 17288 0 16:14:51 - 0:00 db2resyn
db2inst1 19408 17288 0 19:50:41 - 0:00 db2pfchr
db2inst1 21684 18320 0 16:22:52 - 0:01 db2agent (idle)
db2inst1 21992 18320 0 16:15:23 - 0:01 db2agent (TPC)
tetsur3 22754 1 0 20:15:20 - 0:00 /home/db2inst1/sqllib/bin/db2bp 25056

5
db2inst1 23244 17288 0 19:50:41 - 0:00 db2dlock
db2inst1 23746 17288 0 19:50:41 - 0:00 db2pfchr
db2inst1 24538 18320 0 16:14:53 - 0:00 db2agent (idle)
db2inst1 25324 17288 0 19:50:41 - 0:00 db2loggr
db2inst1 25568 17288 0 19:50:41 - 0:00 db2pfchr
db2inst1 26064 18320 0 16:18:08 - 0:00 db2agent (idle)
db2inst1 27610 18320 0 16:22:52 - 0:02 db2agent (instance)
db2inst1 29462 17288 0 19:50:41 - 0:00 db2pclnr

root 30314 26854 0 20:29:20 pts/6 0:00 grep db2
db2inst1 30572 18320 0 17:15:36 - 0:00 db2agent (idle)

"db2as" -
Administrative

Instance
processes

"db2inst1" -
Database Instance

processes

Agent process
connected to
database TPC

Agent process with
instance

connection

Idle Agent process

User's back-end
process (local

client) which is
connected to an
agent process.
Agent could be
local or remote.

25056 is the PID of
the shell or app
which openned

this process.

Process start time
and CPU utilization
134 DB2 UDB V7.1 Performance Tuning Guide

• CLI/ODBC/JDBC Trace Facility
Tracing all the function calls of DB2 CLI Driver, for problem determination
and tuning applications using CLI, ODBC, or SQLJ, or just to better
understand what a third-party application is doing.

The following are some guidelines to determine which tool you should use:

• Choose the Snapshot Monitor or Event Monitor if you want to gather data
about DB2’s operation, performance, and the applications using it. This
data is maintained as DB2 runs and can provide important performance
and troubleshooting information.

• Choose the Explain Facility if you want to analyze the access plan for an
SQL statement or a group of SQL statements.

• Choose the db2batch tool if you want to measure and analyze the
performance of a set of SQL statements. Performance times can be
returned along with Snapshot data for analysis. Explain information can be
gathered for use by the Explain Facility.

• Choose the CLI/ODBC/JDBC Trace Facility to track activity between a CLI
client and DB2. This facility can help pinpoint long running statements and
analyze the time spent in the client application, DB2, or the network.

Some of the monitoring tools include information collected by one or more of
the other monitoring tools. For example, db2batch and the Event Monitor also
display information collected by the Snapshot Monitor.

5.4.1 Obtaining database access information
The first step in the database monitoring process is defining your objectives.
Defining the objectives is very important in selecting the best facility to meet
your requirements. An objective can be:

• Understanding how a given query will be optimized in a specific
environment. For example, there is a query used in an application that
does not perform well.

MON_HEAP_SZ indicates the amount of memory (in 4K pages) which is
allocated for database monitor data (at db2start). The amount of memory
needed will depend on the number of snapshot switches which are turned
on and active Event Monitors. If the memory heap is insufficient, an error
will be returned when trying to activate a monitor and it will be logged to the
db2diag.log file.

Note
Chapter 5. Monitoring tools and utilities 135

• Understanding how applications use database manager resources at a
specific point of time. For example, database concurrency is reduced if a
specific application is started.

• Understanding which database manager events have occurred when
running applications. For example, you notice a degradation in overall
performance when certain applications are run.

5.4.2 Snapshot monitor
The Snapshot Monitor collects various levels of information on the database
manager or database objects. The information is always maintained as a
point-in-time value, such as a counter, high water mark, or last timestamp for
a particular object. No history information is maintained. The different levels
of information are:

• Database manager
• Databases (local, remote or DCS)
• Applications (local, remote or DCS)
• FCM (for internal communications between db2 agents)
• Buffer pools
• Table spaces
• Tables
• Locks
• Dynamic SQL statements

While there is always some basic information which is collected for each of
these levels by default, it is possible to turn on the collection of a broader
range of data for each level by turning on a Snapshot Monitor switch. The
switches are defined by the groups listed in Table 10 . The switches can be
set at the instance level using the UPDATE DBM CFG command or the application
level using UPDATE MONITOR SWITCHES. Snapshot Monitor switches and the
monitoring levels are combined to provide different monitoring information
when taking a snapshot. The two are very closely related. If the proper
monitor switch is not turned on, the snapshot level used may not return any
data.

If you turn on the monitor switch UOW, only the next UOW will be
monitored.

Note
136 DB2 UDB V7.1 Performance Tuning Guide

Table 10. Snapshot monitor switch groups

5.4.2.1 Scope of snapshot monitor data
When activating a switch from the application level, for example, by issuing
the UPDATE MONITOR SWITCHES command from the CLP command line, an
instance connection is made. All data collected for the switch group is made
available to it until the connection is terminated (for example, with the
terminate command or by exiting the current shell). The data collected (and
displayed) will be different (unique) from any other user or shell which turns
on the same switches with the same command at a different point in time.

Figure 29 shows that once the monitor switch was turned on in Application A,
the “get Snapshot Monitor” command can report data collected from the
activity performed in Application B. Even if the switch is turned on from
Application B later, it will be too late to display the activity which has already
passed. It is, however, possible for Application B to display data from
subsequent activity. So it is clear that different shell/sessions (instance
connections) maintain their own set of snapshot data, allowing each to
display different information based on active switches, when they were turned
on, and whether snapshot data was reset.

Group Information
provided

Monitor
switch

DBM CFG parameter

Sorts Number of heaps
used, overflows,
sorts performance

SORT DFT_MON_SORT

Locks Number of locks
held, number of
deadlocks

LOCK DFT_MON_LOCK

Tables Measure activity
(rows read, rows
written)

TABLE DFT_MON_TABLE

Buffer pools Number of reads
and writes, time
taken

BUFFERPOOL DFT_MON_BUFPOOL

Unit of work Start times, end
times, completion
status

UOW DFT_MON_UOW

SQL statements Start time, stop
time, statement
identification

STATEMENT DFT_MON_STMT
Chapter 5. Monitoring tools and utilities 137

Figure 29. Snapshot data not shared between sessions

In order to make the snapshot information available and consistent for all
instance connections, the default monitor switches should be turned on from
the Database Configuration parameters. For example:

UPDATE DBM CFG USING DFT_MON_STMT ON

See Table 10 on page 137 for a list of database manager configuration
parameters which determine the default values of the monitor switches.

A1. UPDATE MONITOR SWITCHES USING
STATEMENT ON

B1. LIST TABLES

A2. GET SNAPSHOT FOR DYNAMIC SQL
ON TPC

{row count data collected/displayed for B1}

Application A

Applicatin B

A3. GET SNAPSHOT FOR DYNAMIC SQL
ON TPC

{row count data collected/displayed for B1and B4}

B2. UPDATE MONITOR SWITCHES USING
STATEMENT ON

B3. GET SNAPSHOT FOR DYNAMIC SQL
ON TPC

{row count data NOT collected/displayed for B1}

B4. LIST TABLES
B5. GET SNAPSHOT FOR DYNAMIC SQL

ON TPC
{row count data collected/displayed for B4 only}
B6. RESET MONITOR FOR DB TPC

When you change the value of the database manager configuration
parameters, you usually need to stop and start the instance to make those
changes effective; however, the changes of the default monitor switches
will be effective immediately. Therefore, you do not need to stop and start
the instance.

Note
138 DB2 UDB V7.1 Performance Tuning Guide

5.4.2.2 Reviewing the Snapshot Monitor switch status
At any time, you can determine the current settings of database monitor
switches by issuing the following command:

GET MONITOR SWITCHES

The following example shows the switch states. The timestamps correspond
to the last time the switches were reset or turned on.

The GET MONITOR SWITCHES command outputs the status of the monitor
switches for the current session. If you issue GET MONITOR SWITCHES from the
other session, the output may be different because each application using the
database system monitor interface has its own set of monitor switches. If you
want to see database manager-level switches status, execute the following
command:

GET DBM MONITOR SWITCHES

This command is used to determine if the database system monitor is
currently collecting data for any monitoring application. The output will be like
the following:

You can see that the buffer pool monitor switch is on in this sample output.
This means that there is another session which turned the buffer pool monitor
switch on.

Monitor Recording Switches

Switch list for node 0
Buffer Pool Activity Information (BUFFERPOOL) = ON
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = ON 06-30-2000 15:20:58.574608
Table Activity Information (TABLE) = ON 06-30-2000 15:53:23.443439
Unit of Work Information (UOW) = OFF

DBM System Monitor Information Collected

Switch list for node 0
Buffer Pool Activity Information (BUFFERPOOL) = ON 06-30-2000 15:53:30.122255
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = ON 06-30-2000 15:20:58.574608
Table Activity Information (TABLE) = ON 06-30-2000 15:53:23.443439
Unit of Work Information (UOW) = OFF
Chapter 5. Monitoring tools and utilities 139

5.4.2.3 Resetting the Snapshot Monitor switches
Some snapshot data will be reset when all activity ends for the database
object level. For example, when all connections to a database are closed, the
database level information is cleared. In addition, since the statement cache
is cleared when all databases disconnect, that information is also cleared
from the Snapshot Monitor.

Monitor switches can be reset at any time by issuing the command:

RESET MONITOR FOR DATABASE databasename

Resetting the monitor switches effectively starts all of the counters at zero,
and further snapshots are based on the new counter values.

To reset the monitor switches for all databases within an instance, the RESET

MONITOR ALL command should be used.

5.4.2.4 Retrieving and displaying Snapshot Monitor data
The Snapshot Monitor data is retrieved by entering the GET SNAPSHOT

command (see the Administrative API Reference, SC09-2947 for API
equivalents). You can specify the database or application which you want to
monitor within the GET SNAPSHOT command.

If you want to make sure that snapshot data (as well as the statement
cache) remains populated even after the last connection is closed, then be
sure to execute ACTIVATE DATABASE to keep the database activated. In this
case, even if there are no connections, the monitored and cached data is
preserved.

Note

Every application has its own copy of the Snapshot Monitor values.
Resetting the monitor switches only affects the counters of the application
that issues the reset.

Note
140 DB2 UDB V7.1 Performance Tuning Guide

The following example shows an example of snapshot data returned for the
Dynamic SQL Statement cache. Note that you need to set the STATEMENT

monitor switch ON to monitor all elements shown in this example.

As you can see in this example, you can use this information to know
currently cached dynamic SQL statements and their statistics.

You can also get data related to the acquired locks using the application level
or database level snapshot using the command below. Partial output follows:

$ db2 get snapshot for dynamic sql on SAMPLE

Dynamic SQL Snapshot Result

Database name = TPC

Database path = /database/db2inst1/NODE0000/SQL00001/

Number of executions = 1
Number of compilations = 1
Worst preparation time (ms) = 13
Best preparation time (ms) = 13
Rows deleted = 0
Rows inserted = 0
Rows read = 17
Rows updated = 0
Rows written = 0
Statement sorts = 0
Total execution time (sec.ms) = 0.020399
Total user cpu time (sec.ms) = 0.010000
Total system cpu time (sec.ms) = 0.010000
Statement text = SELECT NAME, CREATOR, TYPE, CTIME FROM
SYSIBM.SYSTABLES WHERE CREATOR = USER ORDER BY CREATOR, NAME
Chapter 5. Monitoring tools and utilities 141

By analyzing the output, you can see which application holds which type of
locks on which database objects.

See the manual System Monitor Guide and Reference, SC09-2956 for a
detailed explanation of each output element. For the complete syntax of the
GET SNAPSHOT command, see the SQL Reference, SC09-2951.

5.4.2.5 Sample shell scripts
We have written sample shell scripts to filter and format the output of the
dynamic SQL snapshot to make it more readable. One is for the dynamic
SQL snapshot, the other one is for the database lock snapshot.

$ db2 get snapshot for locks on tpc

Database Lock Snapshot

Database name = TPC
Database path = /database/db2inst1/NODE0000/SQL0000
1/
Input database alias = TPC
Locks held = 6
Applications currently connected = 2
Agents currently waiting on locks = 0
Snapshot timestamp = 06-30-2000 16:53:57.984177

Application handle = 36
Application ID = *LOCAL.db2inst1.000630235242
Sequence number = 0001
Application name = db2bp
Authorization ID = DB2INST1
Application status = UOW Waiting
Status change time = Not Collected
Application code page = 819
Locks held = 5
Total wait time (ms) = Not Collected
List Of Locks
Lock Object Name = 65795
Node number lock is held at = 0
Object Type = Row
Tablespace Name = TPCDDATA
Table Schema = DB2INST1
Table Name = REGION
Mode = X
Status = Granted
Lock Escalation = NO
.............
142 DB2 UDB V7.1 Performance Tuning Guide

Filter and format the dynamic SQL snapshot
The sample script sqlcache.ksh displays the SQL statements and selected
statistics currently in the dynamic SQL cache. Some of the statistics will only
be displayed if the STATEMENTS monitor switch has been turned on. The
columns displayed can also be determined by the parameters to the utility.

The sample invocation shown below extracts all SQL statements from the
dynamic SQL cache of the TPC database. The specified comment is added to
the output which is saved into /home/tetsur3/work/results/26 directory. The
original output of the dynamic SQL snapshot is also saved into the same
directory. The -s option is used to specify the string length of the reported
SQL statements.

$ sqlcache.ksh -c "Just SQL Stmts" -d tpc -o 26 -s 80 -sql -b
[Creating: /home/tetsur3/results/26/sqlcache_TPC_800100.sum]
-- Just SQL Stmts
-- --
-- Invocation: /home/tetsur3/work/sqlcache.ksh -c Just SQL Stmts -d tpc -o 26 -s
80 -sql -b
-- Fri Jun 2 17:44:24 PDT 2000
--
db2 get snapshot for dynamic sql on TPC

[Creating: /home/tetsur3/results/26/sqlcache_TPC.out]

SQL-Text
--
SELECT NAME, CREATOR, TYPE, CTIME FROM SYSIBM.SYSTABLES WHERE CREATOR = USER ORD
select s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comme
select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedpri
select count(*) from customer
SELECT colcount FROM SYSIBM.SYSTABLES WHERE creator = ’SYSIBM’ AND name= ’SYSTAB
Chapter 5. Monitoring tools and utilities 143

The following sample shows sample invocations to extract all SQL
statements from the dynamic SQL cache of the TPC database with statistics.
The following sample shows partial statistics of extracted SQL statements:

$ sqlcache.ksh -c "Initial Cache Contents" -d tpc -o 26 -s 3>
[Creating: /home/tetsur3/results/26/sqlcache_TPC_331011.sum]
-- Initial Cache Contents
-- --
-- Invocation: /home/tetsur3/work/sqlcache.ksh -c Initial Cache Contents -d tpc
-o 26 -s 33 -f -t -w -b
-- Fri Jun 2 17:37:17 PDT 2000
--
db2 get snapshot for dynamic sql on TPC

[Creating: /home/tetsur3/results/26/sqlcache_TPC.out]

Qnum | Exec’s Comp’s | BestPrepMS | SQL-File | SQL-Text
--
| 1 | 1 1 | 10 | 23.sql | SELECT NAME, CREATOR, TYPE, CTIME
| 2 | 2 1 | 108 | 27.sql | select s_acctbal, s_name, n_name,
| 3 | 1 1 | 27 | 28.sql | select l_returnflag, l_linestatus
| 4 | 1 1 | 5 | 155.sql | select count(*) from customer
| 5 | 3 1 | 19 | 26.sql | SELECT colcount FROM SYSIBM.SYSTA
144 DB2 UDB V7.1 Performance Tuning Guide

The following sample shows all statistics of extracted SQL statements:

The source file and the complete syntax of this sample script are included in
Appendix A, “Sample scripts” on page 335.

$ sqlcache.ksh -c "AFTER NUM_IO CHANGES" -d tpc -o 26 -s 130
[Created: /home/tetsur3/results/26/bak/sqlcache_TPC.out.27994]
[Created: /home/tetsur3/results/26/bak/sqlcache_TPC_1300000.sum.27994]
[Creating: /home/tetsur3/results/26/sqlcache_TPC_1300000.sum]
-- AFTER NUM_IO CHANGES
-- --
-- Invocation: /home/tetsur3/work/sqlcache.ksh -c AFTER NUM_IO CHANGES -d tpc -o 26 -s 1
-- Fri Jun 2 17:26:32 PDT 2000
--
db2 get snapshot for dynamic sql on TPC

[Creating: /home/tetsur3/results/26/sqlcache_TPC.out]

Qnum | Exec’s Comp’s | BestPrepMS | ExecSEC.MS UserSEC.MS SystSEC.MS |
|R_ReadWrittn| Inserted Updated Deleted|SQL-Text
--
--

| 1 | 1 1 | 10 | 0.012103 0 0 |
| 17 0 | 0 0 0 | SELECT NAME, CREATOR, TYPE,
CTIME FROM SYSIBM.SYSTABLES WHERE CREATOR = USER ORDER BY CREATOR, NAME
| 2 | 2 1 | 108 | 2.15153 1.435 0.21 |
| 4648 460 | 0 0 0 | select s_acctbal, s_name,
n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment from part, supplier, p
artsupp, nation, region w
| 3 | 1 1 | 27 | 110.448 109.69 0.56 |
| 6M 0 | 0 0 0 | select l_returnflag, l_line
status, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 -
| 4 | 1 1 | 5 | 0.688492 0.58 0.02 |
| 4 0 | 0 0 0 | select count(*) from customer
| 5 | 3 1 | 19 | 0 0 0 |
| 0 0 | 0 0 0 | SELECT colcount FROM SYSIBM
.SYSTABLES WHERE creator = ’SYSIBM’ AND name=’SYSTABLES’
Chapter 5. Monitoring tools and utilities 145

Filter and format the database locks snapshot
The sample script locks.ksh displays the current locks held in the database
as reported by the locks Snapshot Monitor. All of the information displayed is
collected even without turning the LOCKS monitor switch ON. The number of
locks are displayed at the database, application and table levels. The
database and application level information can be discarded by specifying
parameters. See the following example:

The COUNT column indicates the number of locks held for the table object with
the same Type, Escalation (YES or NO), Mode and Status.

$ locks.ksh -c "Region Locks" -d tpc -o 26 -b
[Creating: /home/tetsur3/results/26/locks_TPC_0.sum]
-- Region Locks
-- --
-- Invocation: /home/tetsur3/work/locks.ksh -c Region Locks -d tpc -o 26 -b
-- Fri Jun 2 17:57:00 PDT 2000
--
db2 get snapshot for locks on TPC

[Creating: /home/tetsur3/results/26/locks_TPC.out]

Database name = TPC
Database path = /database/db2inst1/NODE0000/SQL00001/
Input database alias = TPC
Locks held = 4
Applications currently connected = 1
Agents currently waiting on locks = 0
Snapshot timestamp = 06-02-2000 17:57:01.864817

APP.NAME APP.USER HANDLE APP.ID APP.STATUS LOCKS WAIT.ms
---------- -------- ------ -------------------- --------------- ----- -------
db2bp DB2INST1 2 *LOCAL.db2inst1 UOW Waiting 4

TABLE NAME	TYPE	ESC	MODE	STATUS	COUNT
=.= | Lock | NO | S | Granted | 1
DB2INST1.REGION | Row | NO | X | Granted | 2
DB2INST1.REGION | Table | NO | IX | Granted | 1

The "table" with the name "=.=" indicates an internal temporary table. See
the Administration Guide: Implementation,SC09-2944 for further details on
TYPE and MODE of locks.

Note
146 DB2 UDB V7.1 Performance Tuning Guide

5.4.3 Event Monitor
While Snapshot Monitoring records the state of database activity when the
snapshot is taken, an Event Monitor records the database activity every time
an event or transition occurs. Some database activities that need to be
monitored cannot be easily captured using the Snapshot Monitor. These
activities include deadlock scenarios. When a deadlock occurs, DB2 will
resolve the deadlock by issuing a ROLLBACK for one of the transactions.
Information regarding the deadlock event cannot be easily captured using the
Snapshot Monitor, since the deadlock has probably been resolved before a
snapshot can be taken.

Event Monitors are created using SQL DDL (Data Definition Language) like
other database objects. Event Monitors can be turned on or off much like the
Snapshot Monitor switches.

When an Event Monitor is created, the type of event to be monitored must be
stated. The Event Monitor can monitor the following events:

• DATABASE — Records an event record when the last application
disconnects from the database.

• TABLES — Records an event record for each active table when the last
application disconnects from the database. An active table is a table that
has changed since the first connection to the database.

• DEADLOCKS — Records an event record for each deadlock event.

• TABLESPACES — Records an event record for each active table space
when the last application disconnects from the database.

• BUFFERPOOLS — Records an event record for buffer pools when the
last application disconnects from the database.

• CONNECTIONS — Records an event record for each database
connection event when an application disconnects from a database.

• STATEMENTS — Records an event record for every SQL statement
issued by an application (dynamic and static).

• TRANSACTIONS — Records an event record for every transaction when
it completes (COMMIT or ROLLBACK statement).

SYSADM or DBADM authority is required to create an Event Monitor.

Note
Chapter 5. Monitoring tools and utilities 147

As shown above, many types of Event Monitors generate an event record
when the last application is disconnected. However, you can use the FLUSH

EVENT MONITOR command to write out current database monitor values for all
active monitor types associated with a particular Event Monitor.

db2 FLUSH EVENT MONITOR evmon_name

The event records written out by this command are noted in the Event
Monitor log with a partial record identifier. You should be aware that flushing
out the Event Monitor will not cause the Event Monitor values to be reset.
This means that the Event Monitor record that would have been generated if
no flush was performed will still be generated when the normal monitored
event is triggered.

The output of an Event Monitor is stored in a directory or in a named pipe.
The existence of the pipe or the file will be verified when the Event Monitor is
activated. If the target location for an Event Monitor is a named pipe, then it is
the responsibility of the application to read the data promptly from the pipe.

If the target for an Event Monitor is a directory, then the stream of data will be
written to a series of files. The files are sequentially numbered and have a file
extension of evt (such as 00000000.evt, 00000001.evt, and so on). The
maximum size and number of Event Monitor files is specified when the
monitor is defined.

Event Monitors can be created using either using SQL or the db2emcrt GUI
tool.

Note

If you’re interested in only filtering certain information from the Event
Monitor, using a pipe is recommended in order to save disk space (and
maintenance) for the monitor storage files. See 5.4.3.6, “Working with
Event Monitors using a pipe” on page 155 for an example of using an Event
Monitor with a pipe.

Note
148 DB2 UDB V7.1 Performance Tuning Guide

5.4.3.1 Creating an Event Monitor
As mentioned, Event Monitors are database objects created using CREATE

EVENT MONITOR statements. The db2emcrt GUI tool can also be used to create
Event Monitors.

As an example, you could use the following DDL to create an Event Monitor
to track transactions and statements:

This Event Monitor is defined to allocate up to ten files, each 2 MB in size, for
a total monitor storage area of 20 MB. Other Event Monitor options include
specifying the size of the write buffer, synchronous (blocked) writes,
asynchronous (unblocked) writes, APPEND the Event Monitor data to
existing records, or REPLACE the Event Monitor data in the directory
whenever the monitor is activated.

Event Monitors can be defined to monitor many different types of database
activities. A filter can also be specified for an Event Monitor. The filter can be
based on the application ID, authorization ID or application name, such as
AUTH_ID = ‘DB2INST1’, APPL_NAME = ‘db2batch’).

An Event Monitor will turn itself off if the defined file space has been
exceeded. A message is written to db2diag.log and db2err.log.

Note

DROP EVENT MONITOR mon_tr_st;
CREATE EVENT MONITOR mon_tr_st FOR

TRANSACTIONS,
STATEMENTS

WRITE TO FILE
-- don’t forget to create directory & chmod g+rw

’/eventmonitors/mon_tr_st’
-- each file 2 Mb (4k pages)

MAXFILESIZE 500
-- 10 files, so maximum 20 Mb

MAXFILES 10
-- 64 K buffer, large buffer for very active monitor

BUFFERSIZE 16
-- Replace files each time monitor started

REPLACE
-- monitor not started automatically at db2start

MANUALSTART;
Chapter 5. Monitoring tools and utilities 149

5.4.3.2 Event Monitor states
After creating the Event Monitor, and the specified directory, you must
activate the monitor to begin collecting data (unless the monitor was defined
with AUTOSTART option). You could use the following DB2 command, specifying
1 to activate or 0 to deactivate the monitor.

db2 SET EVENT MONITOR mon_tr_st STATE 1

To check whether an Event Monitor is currently enabled or disabled, you can
use the following SQL statement:

The output would be as follows:

The IO_MODE column indicates if the monitor uses a blocked file. The column
will be null for monitors using a names pipe.

To see which events were defined for each Event Monitor, you could use the
following statements:

The Event Monitor output directory will not be created by DB2. It must be
created by the database administrator, and the instance owner must be
able to write to the specified directory.

Note

The GUI tool db2emcrt allows you to create and start an Event Monitor in
the one operation. It also allows you to stop the monitor.

Note

SELECT evmonname
, EVENT_MON_STATE(evmonname) AS state
, io_mode

FROM syscat.eventmonitors;

EVMONNAME STATE IO_MODE
------------------ ----------- -------
MON_TR_ST 0 B
MON_ALL_PIPE 0 -

2 d() l t d
150 DB2 UDB V7.1 Performance Tuning Guide

The output would be as follows:

5.4.3.3 Removing an Event Monitor
Just like other database objects, Event Monitors can be dropped from the
database. Removing the definition will remove the associated rows in the
system catalog views, SYSCAT.EVENTMONITORS and SYSCAT.EVENTS. An example of
removing the evmon1 Event Monitor is as follows:

DROP EVENT MONITOR evmon1

SELECT
EVMONNAME

, TYPE
, VARCHAR(FILTER, 40) AS FILTER40

FROM
SYSCAT.EVENTMONITORS

;

EVMONNAME TYPE FILTER40
------------------ ------------------ ---------------------
MON_TR_ST TRANSACTIONS -
MON_TR_ST STATEMENTS -
MON_ALL_PIPE DATABASE -
MON_ALL_PIPE TABLES -
MON_ALL_PIPE DEADLOCKS -
MON_ALL_PIPE TABLESPACES -
MON_ALL_PIPE BUFFERPOOLS -
MON_ALL_PIPE CONNECTIONS -
MON_ALL_PIPE TRANSACTIONS -
MON_ALL_PIPE STATEMENTS -

10 record(s) selected.

Note that this example uses the VARCHAR function to truncate the FILTER
column rather that the SUBSTR function. In this way you will receive a
warning (SQL0445W) if the columns had values which were truncated.

Tip

There is no limit in the number of defined Event Monitors, but a maximum
of 32 Event Monitors can be active per DB2 instance at a time.

Note
Chapter 5. Monitoring tools and utilities 151

5.4.3.4 Event Monitor records
Event Monitor files cannot be analyzed directly. An application must be used.
There are a few alternatives provided by DB2 for analyzing Event Monitor
data that we will discuss, but let us first examine some of the Event Monitor
records.

To ensure that all of the event records have been written to disk (some may
be buffered), you could simply turn the Event Monitor off. You can also use
the BUFFER option of FLUSH EVENT MONITOR command as follows:

FLUSH EVENT MONITOR evmon1 BUFFER

This forces the Event Monitor buffers to be written out. The FLUSH EVENT
MONITOR command with the BUFFER option does not generate a partial record.
Only the data already present in the Event Monitor buffers are written out.

Event monitoring is similar to tracing, since each event is recorded as it
occurs, and it is appended to the event record log files (although you may not
see it right away because of Event Monitor buffering). An Event Monitor file
will contain a number of event records covering event types including:

• Connections
• SQL statements
• Transactions
• Deadlocks
• Buffer pool events
• Table space events
• Table events

If an Event Monitor is monitoring database, table space, or table events, it will
write complete event records when the last application using the database
disconnects. As already discussed, you can use FLUSH EVENT MONITOR

command to get the partial event records.

Analyzing Event Monitor output
You can use the db2evmon utility to generate a report to analyze Event
Monitor data.

To generate the Event Monitor report for the mon_tr_st monitor, issue the
following command indicating where the Event Monitor files are located:

db2evmon -path /eventmonitors/mon_tr_st

or

db2evmon -db tpc -evm mon_tr_st
152 DB2 UDB V7.1 Performance Tuning Guide

The -path option of the db2evmon command is used to indicate the path where
the Event Monitor files reside.

The output of the db2evmon utility will be displayed on the screen by default. It
is best to redirect the output to a file for analysis.

The following example shows a monitored event record for an SQL statement
issued by an applications. You can see executed SQL statements and the
statistics for the statements from the monitored event records.

.....
12) Statement Event ...
Appl Handle: 45
Appl Id: *LOCAL.db2inst1.000519225726
Appl Seq number: 0001

Record is the result of a flush: FALSE

Type : Dynamic
Operation: Close
Section : 1
Creator : NULLID
Package : TOOL1D02
Cursor : DYNCUR
Cursor was blocking: FALSE
Text : select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty,

sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as
sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as
avg_disc, count(*) as count_order from lineitem where l_shipdate <=
date('1998-12-01') - 90 day group by l_returnflag, l_linestatus order by
l_returnflag, l_linestatus

Start Time: 05-19-2000 15:57:27.010169
Stop Time: 05-19-2000 15:59:16.884869
Exec Time: 109.874700 seconds
Number of Agents created: 1
User CPU: 109.080000 seconds
System CPU: 0.630000 seconds
Fetch Count: 4
Sorts: 1
Total sort time: 60514
Sort overflows: 0
Rows read: 6001219
Rows written: 0
Internal rows deleted: 0
Internal rows updated: 0
Internal rows inserted: 0
SQLCA:
sqlcode: 0
sqlstate: 00000

.....
Chapter 5. Monitoring tools and utilities 153

5.4.3.5 Filtering the monitored event record
We have written a sample shell script mon_stmt.ksh, which returns information
about the SQL statements (For example, OPEN CURSOR, FETCH) reaching the
DB2 Engine as collected by the statements Event Monitor. This sample script
issues the db2evmon command which reads the event records and generates a
report. Before using the script, the Event Monitor has to be created and
activated. This script has some parameters to specify what kind of statistics
(such as start time, CPU usage, row counts, and sort information) should be
extracted.

This script maintains the conventions discussed earlier (see 5.2, “Maintaining
tuning information” on page 120) to save output files in the directory
structure. The output that the script generates is dependant on the
parameters chosen and may include: SQL files for individual statements
captured; the entire results of the db2evmon command; and the summarized
(filtered) information and statistics on each statement.

The following example shows a sample output:

-- --
-- Invocation: mon_stmt.ksh -c PIPE -d tpc -m mon_all -o 24 -s 117
-- Wed May 31 17:56:02 PDT 2000
--
db2evmon TPC mon_all

Hand AppID Seq Start-Time | Ty Oper Code | Exec(s) UCPU(s) SCPU(s) |
Read WrittenFetchSortsSOVFL Sort(ms)|SQL-Text

--
--

45 25726 0001 15:57:26.520516 | Dy Prepare 0 | 0.038772 0.000000 0.000000 |

2 0 0 0 0 0 | SELECT colcount FROM SYSIBM.
SYSTABLES WHERE creator = 'SYSIBM' AND name= 'SYSTABLES'
45 25726 0001 15:57:26.560277 | St Execute 0 | 0.008392 0.000000 0.000000 |

1 0 0
45 25726 0001 15:57:26.569503 | St Execute 0 | 0.000682 0.000000 0.000000 |

1 0 0
45 25726 0001 15:57:26.582471 | Dy Prepare 0 | 0.423956 0.050000 0.010000 |

15 37 0 0 0 0 | select l_returnflag, l_linestatus,
sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extended
45 25726 0001 15:57:27.010169 | Dy Open 0 | 0.000172 0.000000 0.000000 |

0 0 0 0 0 0 | select l_returnflag, l_linestatus,
sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extended
45 25726 0001 15:57:27.010169 | Dy Close 0 | 109.8747 109.0800 0.630000 |
6001219 0 4 1 0 60514 | select l_returnflag, l_linestatus,

sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extended
45 25726 0001 15:59:16.902719 | St Commit 0 | 0.042587 0.000000 0.000000 |

0 0 0
154 DB2 UDB V7.1 Performance Tuning Guide

For the complete syntax and the source file, see Appendix A, “Sample
scripts” on page 335.

5.4.3.6 Working with Event Monitors using a pipe
In many cases, using a pipe with an Event Monitor can be very useful. The
obvious advantage is in avoiding the maintenance of the growing Event
Monitor files. Although you can limit the total size of the Event Monitor files in
advance, this may also mean that you might not catch desired events when
there is no more room left for the monitor. By using a pipe, you can discard all
unwanted data, filtering only on the event information which you want to
analyze.

Creating an Event Monitor using a pipe
You could use the following script to create an Event Monitor which captures
all events and sends the data to a pipe (this is just an example, and is not
necessarily recommended).

Use the AIX command below to create the pipe for the Event Monitor and
give it the proper permissions:

mkfifo -m g+rw /eventmonitors/mon_all_pipe

Piped Event Monitor states
Changing the state of a pipe Event Monitor (active/inactive) is done the same
way as for a file Event Monitor, but with the following restriction. You can only
activate the pipe Event Monitor (which would begin the flow of event data)
after starting some application, such as db2evmon, which will read the flow of
data from the pipe. Also, when the application reading from the pipe
completes (or is halted), the pipe is closed and the Event Monitor is
automatically deactivated.

DROP EVENT MONITOR mon_all_pipe;
CREATE EVENT MONITOR mon_all_pipe FOR

DATABASE,
BUFFERPOOLS,
TABLESPACES,
TABLES,
CONNECTIONS,
TRANSACTIONS,
STATEMENTS,
DEADLOCKS

WRITE TO PIPE
-- to create: mkfifo -m g+rw /eventmonitors/mon_all_pipe

’/eventmonitors/mon_all_pipe’
-- monitor not started automatically at db2start

MANUALSTART
;

Chapter 5. Monitoring tools and utilities 155

5.4.4 The Explain Facility
If you want to know how a query will be executed by DB2, you must analyze
its access plan, which is the method for retrieving data from a specific table.
The Explain Facility will provide information about how DB2 will access the
data in order to resolve the SQL statements.

If you have identified a particular application as the possible source of a
performance problem, you need to obtain the SQL statements that the
application issues and analyze the access plan for the SQL statements.

The following list summarizes the different ways by which SQL statements
can be obtained for analysis:

• Directly from the user or developer, who can extract it from their source
code. There may be cases, however, when the SQL statements are
generated dynamically from some sort of querying tool, such as Business
Objects (R).

• From the Dynamic SQL Snapshot Monitor (also known as the global
package cache).

• From the Statements Event Monitor.

Before describing the capabilities and features of the Explain Facility, you
need to understand, at a high level, how SQL statements are processed by
the DB2 database engine. Each SQL statement is analyzed by DB2; then it is
determined how to process the statement during a static bind or when
executed dynamically. The method used to retrieve data from tables is called
the access plan.

The component within DB2 that determines the access plan to be used is
known as the optimizer. During the static preparation of an SQL statement,
the SQL compiler is called on to generate an access plan. The access plan
contains the data access strategy, including index usage, sort methods,
locking semantics, and join methods. The executable form of the SQL
statement is stored in the system catalog tables when a BIND command is
executed (assuming a deferred binding method). This is called a package.

The method for retrieving data from a specific table, such as whether
indexes are used or not, is called the access path. The access plan
involves a set of access paths.

Note
156 DB2 UDB V7.1 Performance Tuning Guide

Sometimes, the complete statement is not known at application development
time. In this case, the compiler is invoked during program execution to
generate an access plan for the query that can be used by the database
manager to access the data. Such an SQL statement is called a dynamic
SQL statement. The access plans for a dynamic SQL statement are not
stored in the system catalogs. They are temporarily stored in memory (known
as the global package cache). The compiler will not be invoked if the access
plans for the dynamic SQL statements already exist in the package cache.

5.4.4.1 Overview of the SQL compiler
The SQL compiler performs a number of tasks during the creation of the
compiled form of the SQL statements. These phases are described below
and are also shown in Figure 30. As you can see in this figure, the
representation of the query is stored in an internal in-memory structure
known as the Query Graph Model.

• Parse query

The first task of the SQL compiler is to analyze the SQL query to validate
the syntax. If any syntax errors are detected, the SQL compiler stops
processing, and the appropriate SQL error is returned to the application
attempting to compile the SQL statement. When parsing is complete, an
internal representation of the query is created.

• Check semantics

The second task of the compiler is to further validate the SQL statement
by checking to ensure that the parts of the statement make sense given
the other parts, for example, ensuring that the data types of the columns
input into scalar functions are correct for those functions.
Also during this stage, the compiler adds the behavioral semantics to the
query graph model, such as the effects of referential constraints, table
check constraints, triggers, and views.

• Re-write query

The SQL compiler uses global semantics provided in the query graph
model to transform the query into a form that can be optimized more
easily. For example, the compiler might move a predicate, altering the
level at which it is applied, in an attempt to improve query performance.
This particular process is called general predicate pushdown. Any
changes made to the query are re-written back to the query graph model.

• Optimize access plan

The SQL optimizer portion of the SQL compiler uses the query graph
model as input and generates many alternative execution plans for
satisfying the user’s request. It estimates the execution cost of each
Chapter 5. Monitoring tools and utilities 157

alternative plan using the statistics for tables, indexes, columns, and
functions, and chooses the plan with the smallest estimated execution
cost.

The optimizer uses the query graph model to analyze the query semantics
and to obtain information about a wide variety of factors, including
indexes, base tables, derived tables, sub-queries, correlation, and
recursion. The output from this step of the SQL compiler is an access
plan, which provides the basis for the information captured in the Explain
tables. The information used to generate the access plan can be captured
with an Explain snapshot.

• Generate executable code

The final step of the SQL compiler uses the access plan and the query
graph model to create an executable access plan, or section, for the
query. This code generation step uses information from the query graph
model to avoid repetitive execution of expressions that only need to be
computed once for a query. Examples for which this optimization is
possible include code page conversions and the use of host variables.

Figure 30. Diagram of steps performed by SQL compiler

Parse Query

Check Semantics

Rewrite Query

Optimize Access Plan

Generate Executable Code

Query
Graph
Model

SQL COMPILER

Execute Plan

Explain Tables
Executable

Plan

db2expln

Access
Plan

Remote SQL Generation

Pushdown Analysis

db2exfmt
Tool

Visual
Explain
158 DB2 UDB V7.1 Performance Tuning Guide

Information about access plans for static SQL is stored in the system catalog
tables. When the package is executed, DB2 will use the information stored in
the system catalog tables to determine how to access the data and provide
results for the query. It is this information that is used by the db2expln tool.

It is recommended that the RUNSTATS command be done periodically on tables
used in queries where good performance is desired. The optimizer will then
be better equipped with relevant statistical information on the nature of the
data. If the RUNSTATS command is not run, or the optimizer determines that
RUNSTATS was run on empty or near empty tables, the optimizer may either use
defaults or attempt to derive certain statistics based upon the number of file
pages used to store the table on disk.

The Explain information must be captured before you can review it using one
of DB2’s Explain tools. You can decide to capture detailed information
regarding the access plan. While the query is being compiled, the information
can be captured into a file or special tables known as Explain tables.

5.4.4.2 Explain tables
DB2 uses Explain tables to store access plan information so that users can
see the decisions that the optimizer has made. These tables are called:

• EXPLAIN_ARGUMENT — Represents the unique characteristics for each
individual operator.

• EXPLAIN_INSTANCE — Main control table for all Explain information.
Each row of data in the Explain tables is explicitly linked to one unique row
in this table. Basic information about the source of the SQL statements
being Explained and environment information is kept in this table.

• EXPLAIN_OBJECT — Contains data objects required by the access plan
generated to satisfy the SQL statement.

• EXPLAIN_OPERATOR — Contains all the operators needed to satisfy the
SQL statement.

• EXPLAIN_PREDICATE — Identifies which predicates are applied by a
specific operator.

• EXPLAIN_STATEMENT — Contains the text of the SQL statement in two
forms. The original version entered by the user is stored in addition to the
re-written version that is the result of the compilation process.

• EXPLAIN_STREAM — This table represents the input and output data
streams between individual operators and data objects. Operators
involved in a data stream are represented in the EXPLAIN_OPERATOR
table. Data objects are represented in the EXPLAIN_OBJECT table.
Chapter 5. Monitoring tools and utilities 159

The Explain tables have to be created before any Explain information can be
gathered. The CLP input file, called EXPLAIN.DDL, located in the misc directory
of the SQLLIB directory, contains the definition of the Explain tables. To
create the Explain tables, you can connect to the database and use the
following command:

db2 -tvf EXPLAIN.DDL

5.4.4.3 Gathering Explain data
There are different kinds of Explain data that can be collected. They differ in
Explain table columns that will be populated. The Explain data options are:

• EXPLAIN — Captures detailed information of the access plan and stores
the information in the Explain tables. No snapshot information is stored.

• EXPLAIN SNAPSHOT — Captures the current internal representation of
an SQL query and related information. The snapshot information is stored
in the SNAPSHOT column of the EXPLAIN_STATEMENT table.

Not all the Explain tools require the same kind of Explain data. Some tools
use the data captured using the EXPLAIN option and others, such as Visual
Explain, require snapshot data.

After creating the Explain tables, you can start capturing the Explain data that
will populate them. Not all the SQL statements can be Explained. The
Explainable SQL statements include: SELECT, SELECT INTO, UPDATE, INSERT,
DELETE, VALUES, and VALUES INTO statements.

Depending on the number of SQL statements or kind of application you want
to Explain, you should use different methods. These methods include the
following:

• EXPLAIN Statement — Gathers Explain data for an SQL statement.

• CURRENT EXPLAIN MODE special register — Specifies to gather Explain
data for dynamic SQL statements.

• CURRENT EXPLAIN SNAPSHOT special register — Specifies to gather
the Explain snapshot data for dynamic SQL statements.

• BIND Options — Specify to gather Explain data for static and/or dynamic
embedded SQL statements in a package.

Explain tables are created the first time you use Visual Explain.

Note
160 DB2 UDB V7.1 Performance Tuning Guide

We will look at each of these methods in turn.

5.4.4.4 EXPLAIN statement
The EXPLAIN statement is useful when you want to gather Explain information
for a single dynamic SQL statement. The EXPLAIN statement can be invoked
either from the Command Line Processor, Command Center or within an
application.

You can control the amount of Explain information that the EXPLAIN statement
will store in the Explain tables. The default is to only capture regular Explain
table information and not the snapshot information. If you wish to modify this
behavior, this is done using the following EXPLAIN statement options:

• WITH SNAPSHOT— This option will capture Explain and Explain
snapshot data into the Explain tables. This will enable analysis from Visual
Explain.

• FOR SNAPSHOT — This option only captures the Explain snapshot
information. No other Explain information is captured other that normally
found in the EXPLAIN_INSTANCE and EXPLAIN_STATEMENT tables.

• The default case is used when no other Explain option is specified. In the
default case, the EXPLAIN statement will only gather the Explain data. No
Explain snapshot data is captured.

To issue the EXPLAIN statement, the user must have INSERT privilege on
the Explain tables.

Let us examine an example of gathering access plan information using the
EXPLAIN statement. The Explain statement is shown below. This example
collects all the available Explain information for the Explain tables.

EXPLAIN ALL WITH SNAPSHOT FOR "SELECT * FROM table1"

The SQL statement being Explained using the EXPLAIN statement will not be
executed; only the Explain data is captured.

Note
Chapter 5. Monitoring tools and utilities 161

The EXPLAIN statement shown in the last example populates a number of
Explain tables, including the SNAPSHOT column of the EXPLAIN_STATEMENT table.

The SNAPSHOT_TAKEN column in the EXPLAIN_INSTANCE table indicates the
existence of a Visual Explain snapshot for each Explained statement.

The EXPLAIN statement can also be embedded in an application to populate
the Explain tables. Once the Explain tables are populated, they can be
queried. Special operators can be examined to determine if the ideal access
plan was used for the query.

Explain special register
Another way to collect Explain information is by using the Explain special
registers. There are two special registers used by DB2 for gathering Explain
information for dynamic SQL statements. These registers can be set
interactively, or they can be used in a dynamic embedded SQL program. The
values of special registers are modified using the SET statement.

The special registers are:

• CURRENT EXPLAIN MODE — Used to populate only the Explain data.
No snapshot will be taken.

• CURRENT EXPLAIN SNAPSHOT — Used to capture only the Explain
snapshot data.

The following statements are used to set the value of the Explain special
registers:

SET CURRENT EXPLAIN MODE option
SET CURRENT EXPLAIN SNAPSHOT option

The Explain registers options are:

• NO — No Explain information is captured for dynamic SQL statements.

• YES — Explain tables or snapshot information will be populated for
dynamic SQL statements while executing the SQL statement, and the
result is returned.

Instead of the keyword ALL, used in our example, other keywords, PLAN and
PLAN SELECTION, can be used. Your EXPLAIN statement must include one of
them.

Note
162 DB2 UDB V7.1 Performance Tuning Guide

• EXPLAIN — Explain tables or snapshot information will be populated for
dynamic SQL statements without executing the SQL statement. Use this
state to obtain Explain information without executing the SQL statement.

The following two options are for the CURRENT EXPLAIN MODE register only:

• RECOMMEND INDEXES — This option will be discussed in the section
that discusses the Index Advisor.

EVALUATE INDEXES — This option will be discussed in the section that
discusses the Index Advisor.

Explain BIND options
The BIND command prepares SQL statements creates a package that is
stored in the database. The BIND command has the options which are related
to the Explain information, EXPLAIN and EXPLSNAP. The EXPLSNAP option collects
Explain snapshot information. If you want to view the access plan using
Visual Explain, then you use the EXPLSNAP option. The EXPLAIN option only
populates the Explain information without including a snapshot.

When ALL is specified for the EXPLAIN or EXPLSNAP options, instead of YES, then
the Explain tables will also be populated for dynamic SQL.

Now let us capture some Explain data using a bind option:

BIND program1.bnd EXPLSNAP ALL

In our example, the Explain snapshot information will be populated for all of
the static SQL statements defined in the program1.bnd package. Because the
ALL option was specified, the dynamic SQL statements issued during
package execution will also have Explain snapshot information gathered at
run-time.

Once you have set a register to YES or EXPLAIN, any subsequent dynamic
SQL statements will be Explained until the register is reset to NO.

Note

Explain snapshots cannot be performed for DRDA application servers.

Note
Chapter 5. Monitoring tools and utilities 163

The method of obtaining Explain information during binds is useful for an
administrator to determine the access plans of static or dynamic statements
executed from packages.

To examine the access plan data for individual dynamic SQL statements, the
special register technique is an easier method to use.

Using the Explain report tools to gather and analyze Explain data
There are alternative methods of gathering Explain data that is stored in a
report rather than in the Explain tables. They are the dynexpln tool and the
db2expln tool.

The db2expln tool describes the access plan selected for static SQL
statements in the packages stored in the system catalog tables. On the other
hand, the dynexpln tool describes the access plan selected for dynamic SQL
statements. It creates a static package for the statements and then uses the
db2expln tool to describe them.

The Explain output of both utility programs is stored in a readable report file.
The Explain report tools are useful as quick and easy methods for gathering
access plan information.

The following example shows the access plan selected for static SQL
statement in the package, CURSOR. This package has been created by
precompiling and binding the sample program cursor.sqc which you can find
in the ~/sqllib/samples/c directory.
164 DB2 UDB V7.1 Performance Tuning Guide

By analyzing this output, you can see the information about how DB2 will
access the data in order to resolve the SQL statements. In this example, a
table scan is chosen to access the STAFF table, and a SARGable predicate is
applied (see Chapter 7 for the predicate types).

5.4.4.5 Examining EXPLAIN data
Once the Explain data has being stored in the Explain tables, it can be
queried or displayed using Visual Explain or other Explain tools. We will now
present how to use Visual Explain to review and analyze an access plan.

Visual Explain
Visual Explain is a GUI (Graphical User Interface) utility that gives the
database administrator or application developer the ability to examine the
access plan determined by the optimizer. Visual Explain can only be used
with access plans Explained using the snapshot option.

Visual Explain can be used to analyze previously generated Explain
snapshots or to gather Explain data and Explain dynamic SQL statements. If
the Explain tables have not been created when you start Visual Explain, it will
create them for you. You can invoke Visual Explain either from the Command
Center or Control Center.

Section = 1

SQL Statement:

SELECT name, dept
FROM staff
WHERE job='Mgr'

Estimated Cost = 25
Estimated Cardinality = 12

Access Table Name = TETSUYA.STAFF ID = 2,3
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible
| Lock Intents
| | Table: Intent Share
| | Row : Next Key Share
| Sargable Predicate(s)
| | #Predicates = 1
| Return Data to Application
| | #Columns = 2
Return Data Completion

End of section
Chapter 5. Monitoring tools and utilities 165

From the Control Center interface, right-click on the database where your
Explain snapshots are stored. You will notice that there is an option called
Show Explained Statements History as shown in Figure 31.

Figure 31. DB2 UDB Control Center — accessing Visual Explain

The Explain SQL... option, also shown in Figure 31, allows you to gather
Explain data and show the graphical representation of a dynamic SQL
statement. This is the easiest way to Explain a single SQL statement.

Once the Explained Statements History window has been opened, all of the
Explained statements will be listed as shown in Figure 32. The displayed
information may differ since it can be customized to your environment. In
Figure 32, the total costs and the SQL statements are shown.
166 DB2 UDB V7.1 Performance Tuning Guide

Figure 32. Customized display of Explained statement history panel

To examine an access plan in detail, simply double-click on the Explained
statement or highlight the entry of interest and use the panel menu to select
Statement ➔➔➔➔ Show access plan on the Explained Statements History
window.

All of the Explain statements will be displayed in the Explained Statements
History list, but only the Explained statements with EXPLAIN SNAPSHOT
information can be examined using Visual Explain.

You can add comments to the Explain snapshots listed in the Explained
Statements History window. To add a comment describing a query, highlight
the entry and then select Statement ➔➔➔➔ Change. This option can be used to
provide a query tag, which can be used to help track the Explain snapshot
information. You may also wish to remove Explain snapshots. The snapshots
can be removed from the Explain tables by selecting Statement ➔➔➔➔ Remove
after highlighting the entry to be removed.

The Visual Explain output displays a hierarchical graph representing the
components of an SQL statement. Each part of the query is represented as a
graphical object. These objects are known as nodes. There are two basic
types of nodes:

• OPERATOR nodes indicate an action that is performed on a group of data.

The Explain SQL option on the Control Center, or the Command Center are
useful to Explain a single dynamic SQL statement.

Note
Chapter 5. Monitoring tools and utilities 167

• OPERAND nodes show the database objects where an operator action
takes place. An operand is an object that the operators act upon. These
database objects are usually tables and indexes.

There are many operators that can be used by the DB2 optimizer to
determine the best access plan. Some of the operators used by Visual
Explain are shown in Figure 33.

Figure 33. Operators and operands displayed in Visual Explain

These operators indicate how data is accessed (IXSCAN, TBSCAN,
RIDSCN, IXAND), how tables are joined internally (MSJOIN, NLJOIN) and
other factors, such as if a sort will be required (SORT). More information
about the operators can be found using Visual Explain Online Help.

The objects shown in a Visual Explain graphic output are connected by
arrows showing the flow of data from one node to another. The end of an
access plan is always a RETURN operator.

Operator Operand

FETCH
RETURN
UNION
UNIQUE
SORT
GRPBY

IXSCAN IXAND
MSJOIN TQUEUE
NLJOIN TBSCAN

TEMP

RIDSCN

Nodes Nodes

TABLE

INDEXES

INSERT
UPDATE
DELETE

 FILTER
168 DB2 UDB V7.1 Performance Tuning Guide

The access plan shown in Figure 34 is a simple SQL statement: SELECT * FROM

LINEITEM,ORDRES WHERE L_EXTENDEDPRICE=O_TOTALPRICE. In this example, there
are two operands and ten operators. The operands are the LINEITEM table and
the ORDERS table, and the operators include table scans (TBSCAN), sorts
(SORT), a merge join (MSJOIN), a table queue (TQUEUE) and a RETURN
operator.

Figure 34. VIsual Explain: graphical access plan for SQL Statement

Generating Explain data for an SQL statement is the only way to analyze the
access plan determined by the DB2 optimizer.

Each node, shown in an access plan graph, has detailed information that can
be accessed by double-clicking on the node or by choosing the Show details

option from the Node menu item.
Chapter 5. Monitoring tools and utilities 169

To display the details of the merge join operation, select the MSJOIN operator
node and then select Show details from the Node menu item. The information
about the MSJOIN operation, shown in the access plan, is displayed in
Figure 35.

Figure 35. VIsual Explain: operator details

This window contains several different sections:

• Cumulative costs — Contains information about the estimated
cumulative costs calculated using the statistics stored in the system
catalog tables.

• Cumulative properties — Contains information about the table, columns,
and so on, used to satisfy the query.

• Input arguments — Contains information about the input arguments that
affect the behavior of the operator.
170 DB2 UDB V7.1 Performance Tuning Guide

It is also possible to examine the detailed information about the operands.
Select an operand node and then select Show statistics from the Node
menu item. Figure 36 shows operand details for the ORDERS table.

Figure 36. VIsual Explain: detailed statistics information for an operand

Detailed information for operand nodes shows the table or index statistics,
including table space information, the number of columns, and the number of
rows in the object. Figure 36 shows the Explained and current statistics from
the system catalog tables. These statistics are used by the DB2 optimizer to
determine the access plan.

When the optimizer has no statistics to work with for a table, or if the statistics
for a table indicate that the cardinality of the table is relatively small, then the
optimizer itself will attempt to calculate the cardinality of the table. The
optimizer does this using certain factors including the average column length
of the table and the number of pages used by the table.

Current statistics are the key to good access plans. If DB2 is not aware of the
characteristics of objects involved in a query, it may not be able to generate a
good access plan. To ensure that the latest statistics are available for the
Chapter 5. Monitoring tools and utilities 171

optimizer, a DB2 utility must be used. This utility is called RUNSTATS. Here is an
example of gathering statistics for the DB2INST1.ORDERS table.

RUNSTATS ON TABLE DB2INST1.ORDERS
WITH DISTRIBUTION AND DETAILED INDEXES ALL

Statistics for the DB2INST1.ORDERS table are stored in the system catalog
tables. After running the RUNSTATS utility, rebind the packages against the
database and re-Explain the SQL statement.

When determining the access plan for dynamic SQL statements, the DB2
optimizer always uses the current statistics. For a static SQL statement, DB2
uses the statistics available at BIND time (when the package was created). To
ensure that current statistics are used with static SQL statements that were
compiled before the statistics were updated, the packages must be recreated.
This can be accomplished using the REBIND command.

5.4.4.6 Guidelines on using EXPLAIN output
There are a number of ways in which analyzing the Explain data can help you
to tune your queries and environment. For example:

Are indexes being used?
Creating appropriate indexes can have a significant benefit on performance.
Using the Explain output, you can determine if the indexes you have created
to help a specific set of queries are being used. In the Explain output, you
should look for index usage in the following areas:

• Join Predicates

• Local Predicates

• GROUP BY clauses

• ORDER BY clauses

• The select list

You can also use the Explain Facility to evaluate whether a different index
can be used instead of an existing index or no index at all. After creating a
new index, collect statistics for that index using the RUNSTATS command and
rebind packages for static SQL programs.

Updated statistics are always needed and become critical as your SQL
statements grow in complexity

Note
172 DB2 UDB V7.1 Performance Tuning Guide

Over time, you may notice, through the Explain data, that instead of an index
scan, a table scan is now being used for dynamic SQL statements. This can
result from a change in the clustering of the table data. If the index that was
previously being used now has a low cluster ratio, you want to:

• Reorganize your table to cluster the data according to that index.

• Use the RUNSTATS command to update the catalog statistics.

• Reexamine the Explain output to determine whether reorganizing the table
has affected the access plan.

Is the type of access appropriate for the application?
You can analyze the Explain output and look for types of access to the data
that, as a rule, are not optimal for the type of application being executed. For
example:

• On-line Transaction Processing (OLTP) Queries
OLTP applications are prime candidates to use index scans with range
delimiting predicates because they tend to return only a few rows that are
qualified using an equality predicate against a key column. If your OLTP
queries are using a table scan, you may want to analyze the Explain data
to determine the reasons why an index scan was not used.

• Browse-Only Queries
The search criteria for a browse type query may be vague causing a large
number of rows to qualify. If the user will usually only look at a few screens
of the output data, you may want to try to ensure that the entire answer set
need not be computed before some results are returned. In this case, the
goals of the user are different from the basic operating principle of the
optimizer, which attempts to minimize resource consumption for the entire
query not just the first few screens of data.

5.4.5 The db2batch utility
The db2batch utility is a benchmarking tool that provides performance
information. This tool processes batch SQL statements. When the db2batch
tool is invoked, it will perform the following:

• Connect to the database

• Read, prepare, and execute the SQL statements

• Disconnect from the database

• Return the answer set, allowing you to determine the number of rows to be
retrieved and the number of rows to be sent to output

• Return performance information, allowing you to specify the level of detail
Chapter 5. Monitoring tools and utilities 173

• Return the mean values for “elapsed time” and “Agent CPU time” of all the
SQL statements executed

The db2batch is usually fed by an input file. In this file, the user is able to set
the different options and write the SQL statements that are to be executed by
the utility. See the sample input file shown below:

When writing an input file, the basic rules are:

1. Options have the syntax --#SET <option> <value>. which lists the different
options available.

2. Options apply only to the SQL statements below them.

3. Options can be “unset” by setting their value to -1.

4. SQL statements must be terminated by a semicolon.

Refer to Table 11 for the Snapshot Monitor Switch Groups.

Table 11. Snapshot monitor switch groups

Option Value Comment

perf_detail 0 No timing is to be done

1 Return elapsed time only (default)

2 Return elapsed time and CPU time

3 Return a summary of monitoring information

4 Return a snapshot for the database manager, the
database, the application, and the statement (the latter is
returned only if autocommit is off, and single statements,
not blocks of statements, are being processed).

5 Return a snapshot for the database manager, the
database, the application, and the statement (the latter is
returned only if autocommit is off, and single statements,
not blocks of statements, are being processed). Also
return a snapshot for the buffer pools, table spaces and
FCM.

--#SET perf_detail 2
--#SET rows_fetch 20
--#SET rows_out 10
select s_name from supplier;
--#SET rows_fetch -1
--#SET rows_out -1
select r_name,r_regionkey from region order by r_name;
174 DB2 UDB V7.1 Performance Tuning Guide

The output of the db2batch utility can be sent to a file. The level of detail,
perf_detail, is set to 1 by default. This means that only the elapsed time for
each SQL statement, agent CPU time for each SQL statement and the mean
value of both will be returned. The default value for rows_fetch and rows_out is
-1, meaning to fetch all rows from the answer set and to send all rows fetched
to the output device.

Db2batch can be used to get snapshots easily. Setting perf_detail to 5 will
get a complete snapshot (database manager, database and application) for
every SQL statement included in the input file. Results include the same data
elements used by the Snapshot Monitor. When benchmarking, setting
rows_out to 0 will avoid “flooding” the output device with the rows fetched.

rows_fetch -1 to n Number of rows to be fetched from the answer set. The
default value is -1 (all rows are to be fetched).

rows_out -1 to n Number of fetched rows to be sent to output. The default
value is -1 (all fetched rows are to be sent to output).

sleep 1 to n Number of seconds to sleep

delimiter A one- or two-character end-of-statement delimiter. The
default value is a semicolon (;)

timestamp Generates a time stamp

pause Prompts the user to continue

Option Value Comment
Chapter 5. Monitoring tools and utilities 175

The following example shows the output from the db2batch tool with
perf_detail 2:

For more information on invocation syntax, and options, type db2batch -h on
a command line.

5.4.5.1 db2bench.ksh
We have written a sample shell script to execute db2batch tool and store the
output to the directory structure which all our sample scripts use (see 5.2,
“Maintaining tuning information” on page 120). The source file of this script is
included in Appendix A, “Sample scripts” on page 335.

select r_name,r_regionkey from region order by r_name

R_NAME R_REGIONKEY

AFRICA 0
AMERICA 1
ASIA 2
EUROPE 3
MIDDLE EAST 4

Number of rows retrieved is: 5
Number of rows sent to output is: 5

Elapsed Time is: 0.026 seconds

*** FCM Snapshot ***

FCM buffers free = 1024
Low water mark of free buffers = 996
FCM message anchors free = 384
Low water mark of free anchors = 384
FCM connection entries free = 384

Low water mark of free connection entries = 364
FCM request blocks free = 480
Low water mark of free request blocks = 452

Summary of Results
==================

Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 0.026 0.010 5 5

Arith. mean 0.026 0.01
Geom. mean 0.026 0.01
176 DB2 UDB V7.1 Performance Tuning Guide

5.4.6 CLI/ODBC/JDBC Trace Facility
The CLI/ODBC/JDBC Trace Facility of DB2 is an essential tool for problem
determination and general understanding of your applications using CLI and
others which use the DB2 CLI driver (for example, ODBC, JDBC, and SQLJ
applications). All function calls executed are recorded in a text file for later
analysis. In addition to functional information, however, the trace file contains
elapsed time information which can be extremely useful for application and
database tuning.

5.4.6.1 Getting started
Let us review how you can obtain a CLI/ODBC/JDBC trace. Full information
can be found in Appendix K of the DB2 UDB Call Level Interface Guide and
Reference, SC09-2950.

First of all, be sure to distinguish CLI/ODBC/JDBC tracing from ODBC
tracing. An ODBC trace shows the calls from the application to an ODBC
Driver Manager. A CLI/ODBC/JDBC trace shows the calls made to CLI, either
directly from the application or from an ODBC Driver Manager. It is
sometimes useful to obtain both traces, but only CLI tracing is discussed in
this section.

To obtain a CLI trace, run the application after using one of these means to
activate tracing:

• Command Line Processor: See the following example:

db2 update cli cfg for section common using trace 1 tracepathname <fully
qualified pathname>
db2 update cli cfg for section common using tracecomm 1

• Client Configuration Assistant (OS/2 and Windows only): Select a
database (it must be one registered for ODBC), then Properties,
CLI/ODBC Settings, Advanced, and Service.

The TRACEPATHNAME keyword specifies the directory path name used to store
individual trace files.

The TRACECOMM keyword specifies whether the network request information is
included in the trace file. For the TRACECOMM keyword, you can specify 0 or 1.
For the default setting of 0, no network request information is captured.
Setting 1 for this keyword significantly changes the trace output, as described
later.
Chapter 5. Monitoring tools and utilities 177

You can also set the following parameters:

• TRACEFLUSH keyword
This keyword specifies whether a write to disk is forced after each
CLI/ODBC entry. For the default setting of 0, a write is not performed after
every entry. Setting TRACEFLUSH=1 has a large performance impact; use
only if the application may not exit normally.

• TRACETIMESTAMP keyword
This keyword specifies whether a timestamp is added at the beginning of
each line, as described later.

• TRACEPIDTID keyword
This keyword causes each line to begin with the process ID and thread ID
of the application thread issuing the corresponding call.

5.4.6.2 CLI trace file contents
The Call Level Interface Guide and Reference, SC09-2950 contains a full
description of the contents of a CLI trace file. The TRACECOMM keyword was
introduced in DB2 UDB Version 5.2 and causes information to be generated
in addition to what is produced by a “regular” trace. The TRACETIMESTAMP and
TRACEPIDTID keywords are new in Version 7.1 and provide additional timing
and thread identification information. We will now discuss what each type of
trace contains, paying particular attention to TRACECOMM output and the new
Version 7.1 keywords.

Regular trace contents
The CLI driver writes trace records when it is entered and when it exits, to
reflect the activity just completed. Thus, in the following code snippet, the first
SQLDisconnect record (2) is written on entry to the CLI driver, as are all records
marked by “--->”. The “Time elapsed” (+8.430000E-004 seconds = 0.0008
seconds) represents the elapsed time in the application between the last exit
from the CLI driver (after the SQLFreeHandle call) and the re-entry to process
the SQLDisconnect call. So, if you see long elapsed times in the “--->” records,
it could reflect a performance problem or heavy activity in the application, or,
conversely, idle time while waiting for user input to be supplied.

(1) SQLFreeHandle()
<--- SQL_SUCCESS Time elapsed - +2.758000E-003 seconds

(2) SQLDisconnect(hDbc=0:1)
---> Time elapsed - +8.430000E-004 seconds

(3) SQLDisconnect()
<--- SQL_SUCCESS Time elapsed - +1.001400E-002 seconds

(1) SQLFreeHandle()
<--- SQL_SUCCESS Time elapsed - +2.758000E-003 seconds

(2) SQLDisconnect(hDbc=0:1)
---> Time elapsed - +8.430000E-004 seconds

(3) SQLDisconnect()
<--- SQL_SUCCESS Time elapsed - +1.001400E-002 seconds
178 DB2 UDB V7.1 Performance Tuning Guide

The second SQLDisconnect record (3) was written on exit from the CLI driver,
and its “Time elapsed” (+1.001400E-002 seconds = 0.01 seconds) represents
the elapsed time in DB2 to process the SQLDisconnect call. As do all records
marked by “<---” (which is followed by the return code of the call), this time
includes time in the CLI driver, the DB2 runtime client (formerly known as the
CAE), the entire communication infrastructure between the client and the
database server, and the time in the database server itself. (We will use the
phrase “in DB2” to refer to these components collectively.)

As useful as these elapsed times are (and later we'll discuss how to maximize
their usefulness), it is often more interesting to obtain the additional
information that comes with TRACECOMM.

TRACECOMM trace contents
There are three main reasons to use TRACECOMM=1:

• To find out when a client-to-server communication occurs, either locally or
over the network. Many CLI functions are processed completely on the
client, and it makes sense to pay less attention to them than to the calls
involving communication: (a) network requests typically have a cost of at
least an order of magnitude higher than requests that are processed on
the client only; (b) generally, there is less that can be done to affect the
execution time of client-only calls.

• To find out the number of bytes sent and received in each communication.

• To break down CLI call elapsed times into their components: (a) in-CLI
and (b) in-communication-and-server.

Let us now look at how the trace records in the above example will change if
the fetch program is run again, this time with TRACECOMM activated (=1).
(Record numbers on the left in the trace records below were added to aid in
the discussion.)

(1) SQLFreeHandle()
<--- SQL_SUCCESS Time elapsed - +2.758000E-003 seconds

(2) SQLDisconnect(hDbc=0:1)
---> Time elapsed - +8.430000E-004 seconds

(3) SQLDisconnect()
<--- SQL_SUCCESS Time elapsed - +1.001400E-002 seconds

SQLFreeHandle()
(1) <--- SQL_SUCCESS Time elapsed - +2.894000E-003 seconds

SQLDisconnect(hDbc=0:1)
(2) ---> Time elapsed - +1.587000E-003 seconds
(3) sqlccsend(ulBytes - 72)
(4) sqlccsend(Handle - 539269544)
(5) sqlccsend() - rc - 0, time elapsed - +1.960000E-004

sqlccrecv()
(6) sqlccrecv(ulBytes - 27) - rc - 0, time elapsed - +4.278810E-001

SQLDisconnect()
(7) <--- SQL_SUCCESS Time elapsed - +4.296480E-001 seconds
Chapter 5. Monitoring tools and utilities 179

The obvious change is in the additional lines under the SQLDisconnect entry
record. The existence of these lines confirms that a server communication
occurred to process the SQLDisconnect.

Other points to note about these new lines are as follows:

• Line (2), “---> Time elapsed ...” indicates that approximately 1
millisecond was spent in the application. So, the application time in this
line has the same meaning as in a trace file generated without TRACECOMM.

• Line (3), “sqlccsend(ulBytes - 72)” indicates that 72 bytes were sent to
the server.

• Line (4), “sqlccsend(Handle - 539269544)” indicates that the send was to
be a thread with the handle ID indicated.

• Line (5), “sqlccsend() - rc - 0 ...” indicates that the send was
successful and had an elapsed time of approximately 0.2 milliseconds.
Note that these sends are done asynchronously, so they should always
have a very small elapsed time. CLI then waits for the response to come
back.

• Line (6), “sqlccrecv(ulBytes - 27) ...” indicates that 27 bytes were
received from the server. It also indicates that 0.4296 seconds were spent
from the completion of the send to the completion of the receive.

Note that some functions, such as SQLConnect, can execute multiple
send-receive pairs, and there will be an entry for each send and receive.

To see the derivation of the elapsed times in a different way, refer to the
following diagram (Figure 37). It shows the main components involved in
executing the calls in the previous trace snippet. The arrows represent the
flow of control as time passes (going down the page). The letters (a), (b), and
so on, represent the points at which the DB2 CLI driver records timestamp
information:

• The elapsed time in line (2) above is the difference between times (a) and
(b). This is the time spent in the application between the return to the
application after the SQLFreeHandle call was processed, and the entry to the
CLI Driver to process the SQLDisconnect call. (Actually, it also includes the
communication time from and to the CLI driver, and the time in the driver
between when the timestamp was taken and the exit or entry, but those
times are generally negligible.)

• The time in line (5) is the difference between (c) and (d), or the Send time.

• The time in line (6) is the difference between (d) and (e), or the Server and
Receive time.
180 DB2 UDB V7.1 Performance Tuning Guide

• The time in line (7) is the difference between (b) and (f), or the “DB2 time”.

Figure 37. CLI calls

Timestamps and process/thread IDs in trace
In Version 7.1 (and Version 6.1 with FixPak 4) two new trace keywords were
added:

• TRACETIMESTAMP. This causes a timestamp to be added at the
beginning of each line. There are three formats available, with the default
value being 0 (off):

• =1 [<number of seconds since 01/01/1970>.<microseconds>-<formatted
timestamp>]

• =2 [<number of seconds since 01/01/1970>]

• =3 [<formatted timestamp>]

• TRACEPIDTID. This causes each line to begin with the process ID and
thread ID of the application thread issuing the corresponding call.

Following are some sample outputs for the various combinations of values for
TRACETIMESTAMP and TRACEPIDTID. Note that the regular trace output is
unchanged, but is shifted to the right of the new information.

Application
(or ODBC
Driver Manager)

CLI Driver Database
ServerSQLFreeHandle

SQLDisconnect

SQLDisconnect

(e)

(d)
(c)

(f)

(b)

(a)

Receive

Send

TIME
Chapter 5. Monitoring tools and utilities 181

* TraceTimestamp=1 *
* TracePidTid=1 *

[Process: 298, Thread: 317]
[Date & Time: 02-11-2000 09:49:07.000048]
(lines omitted here in this and the other examples)

[0000000298 0000000317] [950280547.000306 - 02-11-2000 09:49:07.000306]
SQLSetEnvAttr()
[0000000298 0000000317] [950280547.000393 - 02-11-2000 09:49:07.000393]
<--- SQL_SUCCESS Time

[0000000298 0000000317] [950280547.162111 - 02-11-2000 09:49:07.162111]
SQLAllocConnect(hEnv=0:1,
[0000000298 0000000317] [950280547.162256 - 02-11-2000 09:49:07.162256]
---> Time elapsed - +1.6343

[0000000298 0000000317] [950280547.336041 - 02-11-2000 09:49:07.336041]
SQLAllocConnect(phDbc=0:1)
[0000000298 0000000317] [950280547.336164 - 02-11-2000 09:49:07.336164]
<--- SQL_SUCCESS Time ela

* TraceTimestamp=1 *
* TracePidTid=0 *

[Process: 298, Thread: 317]
[Date & Time: 02-11-2000 09:49:14.000025]

[950280554.000182 - 02-11-2000 09:49:14.000182] SQLSetEnvAttr()
[950280554.000246 - 02-11-2000 09:49:14.000246] <--- SQL_SUCCESS
Time elapsed - +6.400000E-005

* TraceTimestamp=2 *
* TracePidTid=0 *

[950280554.000183] SQLSetEnvAttr()
[950280554.000213] <--- SQL_SUCCESS Time elapsed - +3.000000E-005 seconds

* TraceTimestamp=3 *
* TracePidTid=0 *

[02-11-2000 09:49:15.000184] SQLSetEnvAttr()
[02-11-2000 09:49:15.000233] <--- SQL_SUCCESS Time elapsed - +4.900000E-005 second
182 DB2 UDB V7.1 Performance Tuning Guide

5.4.6.3 Analysis objectives
You may have specific objectives in mind when analyzing a CLI trace, or you
may just be looking to see if anything interesting appears. Here are some of
the most common objectives (from a performance point of view), which are
discussed individually in the next section:

• Get a breakdown of time spent in the application versus time spent in
DB2.

• Find out how long a particular CLI call is taking.

• Focus on those CLI calls which are typically where performance problems
are experienced.

• Find the longest intervals of execution, in either the application or in DB2.

• Find the number of CLI calls of various types.

• Find out how much data is transferred to or from the server.

• Study the timing relationships between multiple threads in an application.

Some other typical objectives involve determining which CLI calls are
occurring (a third-party tool could be generating them), or to look for
execution errors, but these objectives are beyond the scope of this section.

Analyzing the trace and finding the problem
Depending on your objectives, the analysis of the trace file can be attacked in
various ways and with various tools to extract interesting information.

Application time versus DB2 time
Before embarking on a journey to improve a DB2 application's performance, it
is important to know where the majority of time is being spent. For some
applications, the vast majority of the elapsed time is spent in the application,
not in DB2. In such cases, spending time on DB2 tuning is essentially a
wasted exercise, at least until the application problem is dealt with.

Application and DB2 times can be summarized very easily using a Java tool
called CLITraceParser, which is available at:
ftp://ftp.software.ibm.com/ps/products/db2/tools/ in the file
CLITraceParser.zip. See the README.TXT file in that tool subdirectory for
information on installation and usage. Note that CLITraceParser replaces and
improves upon parseCLITrace, which is also available at that FTP site.
Chapter 5. Monitoring tools and utilities 183

The CLITraceParser parses a CLI trace and produces a summary of it. Here is
the output of the tool for a sample CLI trace file:

CLI Trace Report generated by CLITraceParser
==

CLI Trace file : casestudy1_TraceComm_Off
Lines read in file : 108
Trace build info : null

Overall Trace statistics
==

14 statements in trace.
93.110 seconds total trace time.
0.012 seconds spent for application processing.
93.098 seconds spent for CLI processing.

Network Specific CLI processing time statistics
==

0 network flows sent to transmit
0 bytes, requiring a total of

0.000 seconds.

0 network flows received, transmitting
0 bytes, requiring a total of

0.000 seconds.

End of overall trace statistics report

**

Function specific statistics
==

Timing Network Send Network Receive
Function Name Total Application CLI Flows Bytes Time Flows Bytes Time
--
SQLSetConnectAttr 1 0.001 0.001 0 0 0.000 0 0 0.000
SQLExecDirect 1 0.000 92.204 0 0 0.000 0 0 0.000
SQLBindCol 1 0.000 0.000 0 0 0.000 0 0 0.000
SQLFetch 2 0.001 0.002 0 0 0.000 0 0 0.000
SQLFreeHandle 3 0.001 0.005 0 0 0.000 0 0 0.000
SQLAllocHandle 3 0.008 0.017 0 0 0.000 0 0 0.000
SQLConnect 1 0.000 0.856 0 0 0.000 0 0 0.000
SQLDisconnect 1 0.001 0.010 0 0 0.000 0 0 0.000
SQLEndTran 1 0.000 0.002 0 0 0.000 0 0 0.000

End of function specific statistics report

**

Report of errors that occurred in this CLI Trace
==
No errors in trace.

End of error report.

==
End of CLI Trace Report
184 DB2 UDB V7.1 Performance Tuning Guide

The output is quite self-explanatory:

• The first section (“Overall Trace statistics”) shows the total trace time and
the breakdown of time between application and DB2.

• The next section (“Network Specific CLI processing time statistics”)
summarizes the number of sends and receives and the total bytes
transmitted.

• The final section (“Function specific statistics”) shows the number of calls
by function, each function's elapsed time in application and DB2, and the
related network activity (if TRACECOMM=1 was specified).

The output clearly indicates that time in DB2 is the key component of elapsed
time to be addressed in this particular example.

The following example shows the output of CLITraceParser for a trace file
taken from the same application as for the summary above, but this time with
TRACECOMM=1. (A different run was made to collect this trace, so there are small
differences in elapsed times.)
Chapter 5. Monitoring tools and utilities 185

Note that the information in the report is the same as with TRACECOMM=0, except
that the network statistics, which were previously zero, are now supplied.

CLI Trace Report generated by CLITraceParser
==

CLI Trace file : casestudy1_TraceComm_On
Lines read in file : 133
Trace build info : null

Overall Trace statistics
==

14 statements in trace.
88.332 seconds total trace time.
0.014 seconds spent for application processing.
88.319 seconds spent for CLI processing.

Network Specific CLI processing time statistics
==

5 network flows sent to transmit
2762 bytes, requiring a total of
0.001 seconds.

5 network flows received, transmitting
1935 bytes, requiring a total of

88.068 seconds.

End of overall trace statistics report

Function specific statistics
==

Timing Network Send Network Receive
Function Name Total Application CLI Flows Bytes Time Flows Bytes Time

SQLSetConnectAttr 1 0.001 0.001 0 0 0.000 0 0 0.000
SQLExecDirect 1 0.000 87.136 1 324 0.000 1 382 87.130
SQLBindCol 1 0.000 0.000 0 0 0.000 0 0 0.000
SQLFetch 2 0.001 0.001 0 0 0.000 0 0 0.000
SQLFreeHandle 3 0.001 0.005 0 0 0.000 0 0 0.000
SQLAllocHandle 3 0.009 0.017 0 0 0.000 0 0 0.000
SQLConnect 1 0.000 1.150 2 2170 0.000 2 1499 0.933
SQLDisconnect 1 0.001 0.005 1 72 0.000 1 27 0.003
SQLEndTran 1 0.000 0.003 1 196 0.000 1 27 0.002

End of function specific statistics report

Report of errors that occurred in this CLI Trace
==
No errors in trace.

End of error report.

==
End of CLI Trace Report
186 DB2 UDB V7.1 Performance Tuning Guide

Finding how long a particular CLI call took
This task is trivial, requiring only that you can find the trace record of interest.
Often this can be done by searching for the CLI call type. At other times you
may be interested in a particular SQL statement, and you can search for it
using a search string such as SELECT, or a table name, or other text that you
know occurs within the statement.

Focusing on typical problem calls
In general, most of the performance problems in CLI applications occur in a
relatively small subset of calls. Focusing on these functions will allow you to
get a sense of what the database requests are and how the data is flowing
between the application and the server. A close look at these and other CLI
functions comes later. We suggest that you look particularly at this set of
calls:

• SQLConnect or SQLDriverConnect — Connect to a database.

• SQLExecDirect — Combined prepare and execute of an SQL statement.

• SQLPrepare and SQLExecute — Prepare and Execute done separately to
allow many execute requests for the same statement, using only one
prepare.

• SQLFetch — Fetch data either from the local data block or from the
server. In the case of a blocking cursor, most fetches are handled locally.
Data is either retrieved into bound application variables, or into CLI
memory, ready for SQLGetData calls.

• SQLGetData — Copy (and convert if required) data from CLI to the
application.

• SQLError — Some applications may continually generate warnings or
errors, but you can treat them as “normal”. Note that the CLITraceParser

lists all of the errors in its output file for a given trace.

Finding the longest-running events
Finding the longest-running events, particularly in DB2, is a very common and
important task, and the use of appropriate tools can speed up the process
significantly. If the trace is small, you can simply page through the file, but
usually a better alternative is to edit the file and search for the desired strings.
For files that are too large to be edited, you can use the grep command to
extract occurrences of the desired strings.
Chapter 5. Monitoring tools and utilities 187

Some strings of particular interest to search for are:

• E+ : Occurs in all events of 1 second or longer (or zero)

• E+000 : Occurs in all events of 1 second to 9.9 seconds (or zero)

• E+001 : Occurs in all events of 10 seconds to 99.9 seconds

• E- : Occurs in all events of less than 1 second (except zero)

• <--- : Flags times in DB2 (does not appear in TRACECOMM-specific
entries)

• ---> : Flags times in the application

Search examples
Following are some examples of commands to do specific searches.
In each one, “trace_file” must be replaced by the name of the trace file being
analyzed.

Note that trace file lines that are specific to TRACECOMM contain “E+” or “E-”,
but not “<---” or “--->”. Therefore, the first example will find TRACECOMM
specific entries; but all of the other examples, because they include a search
for an “arrow”, will not:

• The following can be used on a Windows command line to list all elapsed
times, both in DB2 and the application, along with their line numbers in the
trace file:

findstr /n "E+ E-" trace_file | more

• The following can be used on a Windows command line to list elapsed
times of 10 to 999.9 seconds in DB2, with their line numbers in the trace
file:

findstr /n "E+001 E+002" trace_file | findstr /c:"<---"

• The following can be used on a Windows command line to list elapsed
times of 0.10 to 0.99 seconds in the application, with their line numbers in
the trace file:

findstr /n "E-001" trace_file | findstr /c:"--->"

• The sort command in Windows is quite limited, compared to sort in UNIX.
The following can be used on UNIX, or on Windows with the MKS toolkit
(or possibly via other tools from freeware or shareware sources), to list, in
descending order and with line numbers within the trace file, the 20
longest elapsed times in DB2 that are one second or longer.

grep -n -e "<---" trace_file | grep -e "E+" | sort
-k 6.12b,6rn -k 6.2b,6.9brn | head -n 20
188 DB2 UDB V7.1 Performance Tuning Guide

• This slight variation of the previous command gives the 20 longest DB2
times under one second:

grep -n -e "<---" trace_file | grep -e "E-" | sort
-k 6.12b,6n -k 6.2b,6.9brn | head -n 20

Note that “E+” is changed to “E-”, and “r” is omitted from “-k 7.12b,7rn”. The
6's in the commands indicate that the 6th token in each line is to be used as a
sort key. If the “-n” option had not been specified in the grep command, there
would not be a line number in each grep output line (one less token per line),
and so the 6's in the sort commands would have to be changed to 5's. Similar
adjustments need to be made if non-zero values of the TRACETIMESTAMP or
TRACEPIDTID keywords are specified when generating the trace.

Finding the numbers of calls
In some scenarios, it is not the elapsed times of individual CLI calls that is the
problem, but the fact that hundreds or even thousands of calls may be
occurring for a given application task. Obviously, even very short calls can
become a performance burden if executed enough times.

The CLITraceParser tool, discussed in “Application time versus DB2 time” on
page 183, is tailor-made for addressing this issue. It provides the number of
calls to each function and the total time for each.

Finding the amount of data transferred to or from the server
The amount of data transferred between the application and the server can
be a key factor in application response times. Determining the amount of data
transferred is easily accomplished by using the TRACECOMM option, as
discussed in , “TRACECOMM trace contents” on page 179.

Analyzing timing relationships between multiple threads
It can be difficult to relate the behavior of different threads in an application,
but using CLI trace options can make this much easier. First of all, recall that
TRACEPATHNAME is used to name the path in which a separate trace file for each
thread will be created. Using TRACETIMESTAMP and TRACEPIDTID, you can have
timestamp and process/thread information added to each trace entry.
Chapter 5. Monitoring tools and utilities 189

The following example shows how you can use the sort command on UNIX or
on Windows with the MKS toolkit (or possibly via other tools from freeware or
shareware sources) to merge the trace entries for multiple files, sort them by
timestamp, and write them to a new file, allowing you to follow the sequence
of events in all of the threads:

Trace for PID = 298, TID = 317, in file 000298.317

[0000000298 0000000317] [950280547.000306 - 02-11-2000 09:49:07.000306]
SQLSetEnvAttr()
[0000000298 0000000317] [950280547.000393 - 02-11-2000 09:49:07.000393]
<--- SQL_SUCCESS Time

[0000000298 0000000317] [950280547.162111 - 02-11-2000 09:49:07.162111]
SQLAllocConnect(hEnv=0:1,
[0000000298 0000000317] [950280547.162256 - 02-11-2000 09:49:07.162256]
---> Time elapsed - +1.6343

[0000000298 0000000317] [950280547.536041 - 02-11-2000 09:49:07.536041]
SQLAllocConnect(phDbc=0:1)
[0000000298 0000000317] [950280547.536164 - 02-11-2000 09:49:07.536164]
<--- SQL_SUCCESS Time ela

Trace for PID = 298, TID = 318, in file 000298.318

[0000000298 0000000318] [950280547.000612 - 02-11-2000 09:49:07.000612]
SQLSetEnvAttr()
[0000000298 0000000318] [950280547.001393 - 02-11-2000 09:49:07.001393]
<--- SQL_SUCCESS Time

[0000000298 0000000318] [950280547.262111 - 02-11-2000 09:49:07.262111]
SQLAllocConnect(hEnv=0:1,
[0000000298 0000000318] [950280547.262256 - 02-11-2000 09:49:07.262256]
---> Time elapsed - +1.6343

[0000000298 0000000318] [950280547.336041 - 02-11-2000 09:49:07.336041]
SQLAllocConnect(phDbc=0:1)
[0000000298 0000000318] [950280547.336164 - 02-11-2000 09:49:07.336164]
<--- SQL_SUCCESS Time ela

Merged file 000298.mrg, created by "sort -k 3.2n 000298.* > 000298.mrg" on Unix

[0000000298 0000000317] [950280547.000306 - 02-11-2000 09:49:07.000306]
SQLSetEnvAttr()
[0000000298 0000000317] [950280547.000393 - 02-11-2000 09:49:07.000393]
<--- SQL_SUCCESS Time
[0000000298 0000000318] [950280547.000612 - 02-11-2000 09:49:07.000612]
SQLSetEnvAttr()
[0000000298 0000000318] [950280547.001393 - 02-11-2000 09:49:07.001393]
<--- SQL_SUCCESS Time
[0000000298 0000000317] [950280547.162111 - 02-11-2000 09:49:07.162111]
SQLAllocConnect(hEnv=0:1,
[0000000298 0000000317] [950280547.162256 - 02-11-2000 09:49:07.162256]
---> Time elapsed - +1.6343
[0000000298 0000000318] [950280547.262111 - 02-11-2000 09:49:07.262111]
SQLAllocConnect(hEnv=0:1,
[0000000298 0000000318] [950280547.262256 - 02-11-2000 09:49:07.262256]
---> Time elapsed - +1.6343
[0000000298 0000000318] [950280547.336041 - 02-11-2000 09:49:07.336041]
SQLAllocConnect(phDbc=0:1)
[0000000298 0000000318] [950280547.336164 - 02-11-2000 09:49:07.336164]
<--- SQL_SUCCESS Time ela
[0000000298 0000000317] [950280547.536041 - 02-11-2000 09:49:07.536041]
SQLAllocConnect(phDbc=0:1)
[0000000298 0000000317] [950280547.536164 - 02-11-2000 09:49:07.536164]
<--- SQL_SUCCESS Time ela
190 DB2 UDB V7.1 Performance Tuning Guide

You can also use this approach to merge trace files for different applications,
or for different invocations of the same application, but be careful: if multiple
clients are involved, each one will have a slightly (or greatly) different system
time that will be used for the timestamps, so the merged sequence of events
may not reflect the true sequence.

One thing you may see in the merged trace file is one thread not having any
entries for a long period. This could simply indicate that a long-running task
was being executed, but it could also indicate that the thread is in a lock wait
state. Note that an application's multiple threads can have multiple
connections to a database, and from the database server's point of view there
is no special relationship between those connections. For instance, they can
lock each other out, even though they belong to the same application and are
executed through the same authorization ID.
Chapter 5. Monitoring tools and utilities 191

192 DB2 UDB V7.1 Performance Tuning Guide

Chapter 6. Tuning configuration parameters

In this chapter, we discuss how memory is used by DB2 UDB, and then
introduce configurable parameters of DB2 UDB to optimize the performance
of your database. You can see more than one hundred configurable
parameters in the manual DB2 UDB Administration Guide - Performance,
SC09-2945, although you do not have to tune all of them. You can focus on a
few important parameters which highly impact the database performance
only. Here we will introduce some parameters, grouped according to which
areas of system resource usage these parameters affect.

As you have seen in Chapter 2, “Setting up the Control Center” on page 15,
when you create a new database, you should use the Configure Performance
Wizard to obtain the recommended values of the performance related
configuration parameters. You should also use this wizard to obtain new
recommended values when your database has been significantly updated.
You can start with the recommendations made by this wizard, and then make
further adjustments to optimize the performance of your database. This
chapter is intended to aid you in making those further adjustments.

6.1 Configuration parameters

DB2 was designed with tuning and configuration parameters that fall into two
general categories:

• Database manager configuration parameters

• Database configuration parameters

6.1.1 Database manager configuration parameters
Each instance of the database manager has a set of the database manager
configuration parameters (also called database manager parameters). These
affect the amount of system resources that will be allocated to a single
instance of the database manager. Also, they configure the setup of the
database manager and the different communications subsystems (such as
TCP/IP and APPC) based on environmental considerations. In addition, there
are other database manager configuration parameters that serve informative
purposes only and cannot be changed. All of these parameters effect the
instance level and have global applicability independent of any single
database stored under that instance of the database manager.

To view, set, and reset the database manager configuration parameters, you
can use the following methods:
© Copyright IBM Corp. 2000 193

• Control Center

The Control Center provides the Configure Instance notebook which you
can use to view, set, and reset the database manager configuration
parameters. See 2.3.1, “Setting up configuration parameters” on page 22.

• Database parameters

From the Command Line Processor or the Command Center, you can
execute these commands:

GET DBM CFG
UPDATE DBM CFG
RESET DBM CFG

6.1.2 Database configuration parameters
Each database has a set of the database configuration parameters (also
called database parameters). These affect the amount of system resources
that will be allocated to that database. In addition, there are some database
configuration parameters that provide descriptive information only and cannot
be changed; others are flags that indicate the status of the database.

To view, set, and reset the database configuration parameters, you can use
the following methods:

• Control Center

The Control Center provides the Configure Database notebook which you
can use to view, set, and reset the database configuration parameters.
See 2.3.1, “Setting up configuration parameters” on page 22.

• Database Parameters

From the Command Line Processor or the Command Center, you can
execute these commands:

GET DB CFG FOR database_name
UPDATE DB CFG FOR database_name USING parameter_name value
RESET DB CFG FOR database_name

6.2 Memory model

In Chapter 1 we showed an overview of the architecture and processes of
DB2 UDB. Before discussing each configuration parameter, we introduce you
to the memory model of DB2, because many of the configuration parameters
available in DB2 affect memory usage on the system. You should understand
how memory is divided among the different heaps before tuning to balance
overall memory usages on the system.
194 DB2 UDB V7.1 Performance Tuning Guide

6.2.1 Types of memory used by DB2 UDB
Figure 38 shows that the database manager uses different types of memory.
In this figure, we assume that intra-partition parallelism is enabled.

Figure 38. Memory segments used by DB2 UDB

The Database Manager Shared Memory is allocated when the database
manager is started using the db2start command, and remains allocated until
the database manager is stopped using the db2stop. This memory is used to
manage activity across all database connections. From the Database
Manager Shared Memory, all other memory is attached/allocated.

The Database Global Memory (also called Database Shared Memory) is
allocated for each database when the database is activated using the
ACTIVATE DATABASE command or the first application connects to the database.
The Database Global Memory remains allocated until the database is
deactivated using the DEACTIVATE DATABASE command or the last application
disconnects from the database. The Database Global Memory contains
memory areas such as buffer pools, lock list, database heap and utility heap.
The database manager configuration parameter NUMDB defines the maximum
number of concurrent active database. If the value of this parameter
increases, the number of Database Global Memory segments may grows
depending on the number of active databases.

Database Manager
Shared Memory

Agent
Private
Memory

Application
Global

Memory

Database
Global Memory

Database
Global Memory

Application
Global

Memory

(1)(1) (numdb)

(1) (maxappls)

(1) (maxagents)

Agent
Private
Memory

Agent
Private
Memory

Agent
Private
Memory

Agent
Private
Memory

Application
Global

Memory
Chapter 6. Tuning configuration parameters 195

The Application Global Memory is allocated for each connection when the
connection is established to a database and remains allocated until the
connection is terminated. This memory is used by DB2 agents, including
coordinator agents and subagents working on behalf of the application, to
share data and coordinate activities among themselves.

The Agent Private Memory is allocated for each DB2 agent when the DB2
agent assigned to work for an application. The Agent Private Memory
contains memory areas which will be used only by this specific agent, such as
sort heaps and application heaps.

The Agent Private Memory remains allocated even after the DB2 agent
completes tasks for the application and gets into idle state. However, if you
set the DB2 registry variable DB2MEMDISCLAIM to YES, then DB2 disclaims some
or all memory once freed, depending on the value given with the DB2 registry
variable DB2MEMMAXFREEwhich defines the amount of the memory to be retained
by each DB2 agent. We discuss these registry variables later in this chapter.

The database configuration parameter MAXAPPLS defines the maximum number
of applications that can simultaneously connect to the database. The
database manager configuration parameter MAXAGENTS defines the maximum
number of DB2 agents including coordinator agents and subagents in the
instance. If the value of this parameter increases, the number of the
Application Global Memory segments and the Agent Private Memory
segments may grow, depending on the number of connected applications and
DB2 agents, respectively.

6.2.2 How memory is used
Figure 39 and Figure 40 show how memory is used to support applications.
In the previous section we introduced some configuration parameters which
may affect the number of memory segments. We introduce the configuration
parameters which allow you to control the size of each memory by limiting
their size.

Application Global Memory is allocated if you enable intra-partition
parallelism, or if the database manager is in a partitioned database
environment using DB2 UDB Enterprise-Extended Edition, which is beyond
our discussion

Note
196 DB2 UDB V7.1 Performance Tuning Guide

Figure 39. Database manager shared memory overview

The Database Manager Shared Memory is required for the database
manager to run. The size of this memory is affected by the following
configuration parameters:

• Database System Monitor Heap size (MON_HEAP_SZ)

• Audit Buffer Size (AUDIT_BUF_SZ)

• FCM Buffers (FCM_NUM_BUFFERS)

• FCM Message Anchors (FCM_NUM_ANCHORS)

• FCM Connection Entries (FCM_NUM_CONNECT)

• FCM Request Blocks (FCM_NUM_RQB)

The database manager uses the fast communication manager (FCM)
component to transfer data between DB2 agents when intra-partition
parallelism is enabled. Thus if you do not enable intra-partition parallelism,
memory areas required for FCM buffers, message anchors, connection
entries and request blocks are not allocated. We discuss these parameters
later in this chapter.

The maximum size of the Database Global Memory segment is determined
by the following configuration parameters:

Database Manager
Shared Memory (including FCM)

Application Global Memory

(app_ctl_heap_sz)

Database Global MemoryUtility Heap
(util_heap_sz)

Restore Buffer
(restbufsz)

Package Cache
(pckcachesz)

Backup Buffer
(backbufsz)

Database Heap
(dbheap)

Buffer Pools
(buffpage)

Extended Memory Cache

Lock List (locklist)

Catalog Cache
(catalogcache_sz)

Log Buffer
(logbufsz)

Sort Heap for Shared Sort
(sortheap)

Monitor heap
(mon_heap_sz)

Audit buffer
(audit_buf_sz)
Chapter 6. Tuning configuration parameters 197

• Buffer Pool Size that were explicitly specified when the buffer pools were
created or altered (the value of BUFFPAGE database configuration parameter
is taken if -1 is specified)

• Maximum Storage for Lock List (LOCKLIST) (see Chapter 7)

• Database Heap (DBHEAP)

• Utility Heap Size (UTIL_HEAP_SZ) (see Chapter 8)

• Extended Storage Memory Segment Size (ESTORE_SEG_SZ) (see Chapter 3)

• Number of Extended Storage Memory Segments (NUM_ESTORE_SEGS) (see
Chapter 3)

• Package Cache Size (PCKCACHESZ)

Application Global Memory is determined by the following configuration
parameter:

• Application Control Heap Size (APP_CTL_HEAP_SZ)

Figure 40. Database agent/application private/shared memory overview

The maximum size of Agent Private Memory segments is determined by the
values of the following parameters:

• Application Heap Size (APPLHEAPSZ)

• Sort Heap Size (SORTHEAP)

Agent Private Memory

Agent Stack
(agent_stack_sz)

Statistics Heap
(stat_heap_sz)

Sort Heap
for Private Sort

(sortheap)

Application Heap
(applheapsz)

DRDA Heap
(drda_heap_sz)

UDF Memory
(udf_mem_sz)

Statement Heap
(stmtheap)

Query Heap (query_heap_sz) Client I/O Block (rqrioblk)

User or Application Process
(Local Client)

User or Application Process
(Remote Client)

For Remote
Clients

Agent/Application Shared Memory

Application Support Layer Heap (aslheapsz)

Client I/O Block (rqrioblk) For Local
Clients
198 DB2 UDB V7.1 Performance Tuning Guide

• Statement Heap Size (STMTHEAP)

• Statistics Heap Size (STAT_HEAP_SZ)

• Query Heap Size (QUERY_HEAP_SZ)

• DRDA Heap Size (DRDA_HEAP_SZ)

• UDF Shared Memory Set Size (UDF_MEM_SZ)

• Agent Stack Size (AGENT_STACK_SZ)

• Client I/O Block Size (RQRIOBLK) (for remote clients)

The size of Agent/Application Shared Memory is affected by the following:

• Application Support Layer Heap Size (ASLHEAPSZ)

• Client I/O Block Size (RQRIOBLK) (for local clients)

For valid ranges and default values of these configuration parameters, see
the DB2 UDB Administration Guide - Performance, SC09-2945.

6.3 CPU related parameters

Here we discuss the configuration parameters which affect CPU usage. As
you have seen in Chapter 1, “Overview” on page 1, a database manager has
several DB2 processes, and each of them consumes CPU time. Among the
processes, the major consumers of CPU time are DB2 agents, including
coordinator agents and subagents. They are one of the most crucial
processes and facilitate the operations of applications with databases. If your
database server has multiple CPUs and you enable intra-partition parallelism,
the database manager can exploit those CPUs using multiple subagents to
process one complex query.

6.3.1 Intra-partition parallelism
The database manager configuration parameter INTRA_PARALLEL controls
whether or not intra-partition parallelism is enabled. We suggest that this
parameter should be enabled or disabled depending on these considerations:

• Typical workload

• The number of users

For complex SQL type workloads with relatively few users (such as OLAP or
DSS), then enable intra-partition parallelism (set to YES). For SQL which is
simple, repetitive and the number of queries are large (such as OLTP), then
do not enable intra-partition parallelism (set to NO).
Chapter 6. Tuning configuration parameters 199

If you do disable parallelism by setting the INTRA_PARALLEL database manager
configuration parameter to NO, we advise that you set the MAX_QUERYDEGREE

database manager configuration parameter or DEFAULT_DEGREE database
configuration parameters to 1.

With intra-partition parallelism enabled, DB2 will allocate approximately
12 MB of memory (used for control information). This control area will be
checked for each statement. So by setting MAX_QUERYDEGREE or DFT_DEGREE to try
to avoid parallelism is meaningless as you still incur this overhead. This
overhead will not be incurred with INTRA_PARALLEL set to NO.

Here are the additional considerations:

• MAX_QUERYDEGREE and DFT_DEGREE
Set this database manager configuration parameter to –1 (ANY) if you
have set INTRA_PARALLEL to YES. By doing this, you allow the DB2 optimizer
to decide the most suitable value. The value it chooses is based on
complexity of query, database and instance configuration, and workload.

• CPUSPEED
Set this database manager configuration parameter to –1. This will be the
most recommended value for DB2. By doing this, DB2 will calculate the
value.

• For new instances, make your decision on intra-partition parallelism
before you create your database(s). If you change this value once a
database exists, then you will need to rebind all packages defined in that
database.

6.3.2 Controlling the number of DB2 agent processes
Enabling intra-partition parallelism and having more concurrent users will
increase the number of DB2 agent processes. For example, if you disable
intra-partition parallelism, five concurrent query requests will be carried out
by five DB2 agent processes respectively; however, if you enable
intra-partition parallelism and the chosen query degree is four, twenty-five
DB2 agent processes (one coordinator agents and four subagents for each
request) will carry out these five query requests.

Having a huge number of DB2 agent processes may cause CPU constraints
due to context switching, as well as memory constraints.

To control the number of DB2 agents, you have the following configuration
parameters:

• The database manager configuration parameter MAXAGENTS defines the
maximum number of database manager agents, whether it is coordinator
200 DB2 UDB V7.1 Performance Tuning Guide

agents or subagents, available at any given time to accept application
requests.

• The database manager configuration parameter MAX_COORDAGENTS defines
the maximum number of coordinator agents.

6.4 Memory related parameters

Many of the configuration parameters available in DB2 affect memory usage
on the system. We discuss some of them which have high impact on the
database performance.

6.4.1 Sorting methods
When an SQL query requires the data to be returned in a defined sequence
or order, the result may or may not require sorting. DB2 will attempt to
perform the ordering through index usage. If an index cannot be used, the
sort will occur. A sort involves two steps:

1. A sort phase.

2. Return of the results of the sort phase.

How the sort is handled within these two steps results in different categories
or types by which we can describe the sort. When considering the sort phase,
the sort can be categorized as overflowed or non-overflowed. When
considering the return of the results of the sort phase, the sort can be
categorized as piped or non-piped.

6.4.1.1 Overflowed and non-overflowed
If the information being sorted cannot fit entirely into the sort heap (a block of
memory that is allocated each time a sort is performed), it overflows into
temporary database tables. Sorts that do not overflow (non-overflowed)
always perform better than those that do.

6.4.1.2 Piped and non-piped
If sorted information can return directly without requiring a temporary table to
store a final, sorted list of data, it is referred to as a piped sort. If the sorted
information requires a temporary table to be returned, it is referred to as a
non-piped sort. A piped sort always performs better than a non-piped sort.

The DB2 optimizer will determine if a non-overflowed sort can be performed
and if a piped sort can be performed by comparing the expected result set
with the value of the SORTHEAP database configuration parameter, and so forth.
Chapter 6. Tuning configuration parameters 201

The sort heap is used for each application sort request. The DB2 optimizer
may decide to attempt to perform a non-overflowed piped sort. However, if
there is not enough available memory to allocate another sort heap at run
time, then the sort may be performed using a temporary table.

There is a database manager parameter that is used to control the total
amount of memory allocated for sorting on the DB2 server. The parameter is
called SHEAPTHRES. The SHEAPTHRES parameter should be set to the maximum
amount of memory for all sort heaps that should be allowed to be allocated at
any given time.

If intra-partition parallelism is enabled, a sort operations can be processed in
parallel, and it can be a private sort or a shared sort, which uses memory
from two different memory sources. As you can see in Figure 39, the sort
heap for a private sort is allocated in the Agent Private Memory; whereas the
sort heap for a shared sort is allocated in the Database Global Memory. The
size of the shared sort memory area is statically predetermined (and not
pre-allocated) at the time of the first connection to a database based on the
value of SHEAPTHRES. The size of the private sort memory area is unrestricted.

The SHEAPTHRES parameter is used differently for private and shared sorts.

For private sorts, this parameter is an instance-wide soft limit on the total
amount of memory that can be consumed by private sorts at any given time.
When the total private-sort memory consumption for an instance reaches this
limit, the memory allocated for additional incoming private-sort requests will
be considerably reduced.

To obtain an ordered result set, a sort is not always required. If an index
scan is the access method used, then the data is already in the order of the
index, and sorting is not required.

Note

You can use the Explain Facility to see which type of parallel sort is
performed for a query.

Note
202 DB2 UDB V7.1 Performance Tuning Guide

For shared sorts, this parameter is a database-wide hard limit on the total
amount of memory consumed by shared sorts at any given time. When this
limit is reached, no further shared-sort memory requests will be allowed (until
the total shared-sort memory consumption falls below the limit specified by
SHEAPTHRES).

There are a number of sorting related performance elements that can be
monitored using the system performance monitor. These elements include:

• Total sorts — This variable can be monitored to see the total number of
sorts that have been executed.

• Sort overflows — This variable can be monitored to see the total number
of sorts that ran out of sort heap and may have required disk space for
temporary storage.

You can calculate the percentage of overflow sorts by Sort Overflows/Total

Sorts and use the value to determine if the optimizer is attempting to use a
sort heap and fails. If the percentage is high, consider increasing the SORTHEAP

and/or SHEAPTHRES values.

You can also monitor the following performance elements:

• Piped sorts requested — This variable can be monitored to see the
number of piped sorts that have been requested.

• Piped sorts accepted — This variable can be monitored to see the
number of piped sorts that have been accepted.

You can calculate the percentage of piped sorts accepted by Piped Sorts

Accepted/Piped Sorts Requested and determine if piped sorts are being chosen
by the optimizer but not accepted. If the percentage is low, consider
increasing the SORTHEAP and/or SHEAPTHRES.

While modifying SORTHEAP / SHEAPTHRES, you should be aware of the possible
implications of either of these options.

• If you increase the sort heap threshold, then there is the possibility that
more memory will remain allocated for sorting. This could cause the
paging of memory to disk.

In a piped sort, the sort heap does not get freed until the application closes
the cursor associated with the sort. So a piped sort can use up memory
until the cursor is closed.

Note
Chapter 6. Tuning configuration parameters 203

• If you decrease the sort heap, more chances for the number of records
inserted into a sort exceeds the capacity of the sort heap, and one or more
“sort runs” will be written to a single temporary table. Each run constitutes
a sorted list of records that must be merged with other runs in order to
produce a final sorted list. Thus, you might require an extra external
merge to get the final sorted list, that could slow down the overall sort
performance.

It is important to allocate as much memory as possible to the sort heap (and
set the threshold accordingly) without over allocating memory and causing
memory paging to occur. It is possible for a sort to be done entirely in sort
memory. However, if this causes operating system to perform page swapping
then you can lose the advantage of a large sort heap. So, whenever you
adjust the SORTHEAP/SHEAPTHRES configuration parameters, use an operating
system monitor to track any changes in the system paging.

The following two sample outputs show monitored sorting related elements
by the snapshot monitor:

6.4.2 Agent pool size
The database manager configuration parameter NUM_POOLAGENTS defines the
size of the agent pool which contains idle DB2 agents. When DB2 agents
finish executing their current request, they will be in idle state unless the
number of idle agents exceed the value of NUM_POOLAGENTS; otherwise, they will
be terminated.

$db2 GET SNAPSHOT FOR DATABASE MANAGER | grep -i sort
Sort heap allocated = 305
Post threshold sorts = 0
Piped sorts requested = 4
Piped sorts accepted = 4
Sorting Information (SORT) = ON 06-21-2000 15:47:36.337746

$db2 GET SNAPSHOT FOR DATABASE ON dbname | grep -i sort
Total sort heap allocated = 305
Total sorts = 2
Total sort time (ms) = 19649
Sort overflows = 0
Active sorts = 4
204 DB2 UDB V7.1 Performance Tuning Guide

When the database manager needs to assign a coordinator agent or
subagents for a application, it tries to reuse idle agents from agent pool. If the
agent pool does not have available idle agents, the database manager will
create new agent processes (up to the number defined by MAXAGENTS). If more
agents are created than is indicated by the value of NUM_POOLAGENTS, they will
be terminated when they finish executing their current request, rather than be
returned to the pool.

Setting the appropriate value for this parameter can reduce the cost to create
and terminate DB2 agent processes. Too high a value for this parameter may
waste the memory due to many idle agents.

If you run a decision-support environment in which few applications connect
concurrently, set NUM_POOLAGENTS to a small value to avoid having an agent
pool that is full of idle agents.

If you run a transaction-processing environment in which many applications
are concurrently connected, increase the value of NUM_POOLAGENTS to avoid the
costs associated with the frequent creation and termination of agents.

6.4.3 Disclaim memory areas for DB2 agents
When DB2 agents finish executing their current request and are returned to
the agent pool, they do not release their agent private memory which includes
the allocated sort heap. This behavior is usually results in good performance,
as the memory is kept for fast re-use. However, if you want to increase the
agent pool size on a memory constrained system, this behavior may cause
excessive activity to the paging space because many idle agents may keep
large amount of memory. To avoid this condition, set the DB2 registry variable
DB2MEMEDISCLAIM to YES by executing the following command:

db2set DB2MEMDISCLAIM = yes

Setting DB2MEMDISCLAIM to YES tells DB2 to disclaim some or all memory
associated with the agent which is returned to the agent pool, depending on
the value given with the DB2 registry variable DB2MEMMAXFREE. This
DB2MEMMAXFREE value specifies the amount of memory that can be retained by
each DB2 agent. If DB2MEMMAXFREE is null, then all of the memory is disclaimed
when the agent is returned to the agent pool. If DB2MEMMAXFREE is given a value,
then only some of the memory is kept (up to the value given in DB2MEMMAXFREE).
This ensures that the memory is made readily available for other processes
as soon as the agent is returned to the agent pool. DB2MEMDISCLAIM and
DB2MEMMAXFREE work together. We recommend that if you use this feature, you
specify a value of 8 MB for DB2MEMMAXFREE, as the following example shows:

db2set DB2MEMMAXFREE = 8000000
Chapter 6. Tuning configuration parameters 205

6.4.4 FCM related parameters
If you enable intra-partition parallelism, the database manager will use FCM
component to transfer data between DB2 agents. Therefore, the amount of
memory area defined by the following database manager configuration
parameters would be allocated in the Database Manager Shared Memory
even though you do not use DB2 EEE, which enables you to create
partitioned databases:

• FCM Buffers (FCM_NUM_BUFFERS)

• FCM Message Anchors (FCM_NUM_ANCHORS)

• FCM Connection Entries (FCM_NUM_CONNECT)

• FCM Request Blocks (FCM_NUM_RQB)

You can start with the values recommended by Configure Performance
Wizard. To tune these parameters, use the database system monitor to
monitor the low water mark for the free buffers, free message anchors, free
connection entries, and the free request blocks. If the low water mark is less
than 10 percent of the number of the corresponding free data item, increase
the value of the corresponding parameter. We discuss the database system
monitor in Chapter 5, “Monitoring tools and utilities” on page 119.

6.4.5 Package cache size
The PCKCACHESZ database configuration parameter defines the package cache
size. The database manager uses this memory to cache packages, which has
been loaded from the system catalog, for static SQL or (dynamically
generated) for dynamic SQL. If applications connecting to a database
execute the same query multiple times, the database manager can reduce its
internal overhead by eliminating the need to reload sections of package for
static SQL, and also can reduce overhead to generate the package for
dynamic SQL.

For dynamic SQL, even though your application does not execute exactly the
same queries, it may benefit by the package cache using parameter markers.
See 7.3.2.2, “Avoid repeated PREPARE statements” on page 246.

There are a number of package cache related performance variables that can
be monitored using the system performance monitor. These parameters
include:

• Package cache insert — This variable indicates the total number of times
that a requested section was not available for use and had to be loaded
into the package cache. If this number is high, it may mean that the cache
is too small.
206 DB2 UDB V7.1 Performance Tuning Guide

• Package cache lookups — This variable indicates the number of times
that an application looked for a section or package in the package cache.
This counter includes the cases where the section is already loaded in the
cache and when the section has to be loaded into the cache.

You can calculate the package cache hit ratio using the following formula:

1 - (Package Cache Inserts / Package Cache Lookups)

Normally, a low hit ratio would mean that the cache is too small. But as a
result of running DDL statements, a low hit ratio does not always mean that
the cache is small. It may be caused by invalidated dynamic sections and the
need of information to be reinserted back into the cache. In this case,
increasing PCKCACHESZ will not improve the cache performance.

You should take your application type into account when you tune the
package cache size. For example, if your applications rarely execute the
same query, increasing the package cache to keep the package may not be
worthwhile to do.

The package cache is a working cache, so you cannot set this parameter to
zero. There must be sufficient memory allocated in this cache to hold all
sections of the SQL statements currently being executed. If there is more
space allocated than currently needed, then sections are cached. These
sections can simply be executed the next time they are needed without
having to load or compile them.

The limit specified by the PCKCACHESZ parameter is a soft limit. This limit may
be exceeded, if required, if memory is still available in the database shared
set. You can use the Package Cache High Water Mark monitor element to
determine the largest that the package cache has grown, and the Package
Cache Overflows monitor element to determine how many times the limit
specified by the PCKCACHESZ parameter has been exceeded. The following
example shows monitored package cache related elements by the snapshot
monitor:

$db2 GET SNAPSHOT FOR DATABASE ON dbname | grep -i package
Package cache lookups = 28
Package cache inserts = 17
Package cache overflows = 0
Package cache high water mark (Bytes) = 221566
Chapter 6. Tuning configuration parameters 207

6.4.6 Utility heap size
The UTIL_HEAP_SZ database configuration parameter defines the maximum
size of the utility heap which is allocated in the Database Global Memory. The
DB2 utilities including BACKUP, RESTORE, LOAD use this memory area. Each
database has a utility heap allocated as required by the utilities, and freed
when the utilities are completed and the memory is no longer needed. We
recommend to use the default value for this parameter unless your utilities
run out of space. See Utility Heap Size in 8.1.2.1, “Utility heap size
(util_heap_sz)” on page 274.

6.5 Disk I/O related parameters

Hardware components that make up your system can influence the
performance of your system. You have to balance the demand for disk I/O
across several disk storage devices, controllers. These can affect how fast
the database manager can retrieve information from disks. The appropriate
values for configuration parameters can be determined by benchmarking,
where typical and worst-case SQL statements are run against the server and
the values of the parameters are modified until the point of diminishing return
for performance is found.

Parameters that allocate memory should never be set to their highest values,
unless it is fully justified, even on systems with the maximum amount of
memory installed. A few tuning parameters that have implications associated
with performance of I/O are discussed here.

On OLTP (that is, random access) environments, you need as many disks in
the table spaces as are necessary to support the I/O rates required. For
example, if your table space needs to process 100 IO/sec and your disks can
service 60 IO/sec, then you would need two disks. Often writes are more
expensive than reads (as with RAID systems, since they may require multiple
physical writes for redundancy), and thus the read/write ratio, along with the
true I/O cost of one write, has to be considered.

On DSS (that is, sequential access) environments, you need as many disks
as are necessary to meet the I/O rates required. Note, however, that DSS
workloads are more “disk-friendly”, mainly due to their larger I/O sizes.
Because of this, and the prefetching/caching abilities built into many file
systems and disk subsystems (for example, RAID/Extended Storage
Subsystem), a DSS workload can often get by with less disks than an OLTP
system with similar I/O needs. Normally, 5 disks per CPU are often sufficient
for simple DSS scans. With full SMP parallelism enabled, this number can
increase to 10 or more disks per CPU.
208 DB2 UDB V7.1 Performance Tuning Guide

6.5.1 Buffer pool size (buffpage)
A buffer pool is an area of storage in memory into which database pages are
temporarily read and changed. The purpose of the buffer pool is to improve
database system performance by buffering the data in memory. Here data
can be accessed from memory rather than from disk, so the database
manager needs to read or write less to the disk. Not all data in DB2 is
buffered; long field and LOBs are only accessed through direct I/O and are
never stored in the buffer pool.

One component of the database manager is called Buffer Pool Services
(BPS). The BPS is responsible for reading data and index pages from disk
into memory and writing pages from memory to disk. BPS will use the File
Storage Manager or the Raw Storage Manager to get the pages depending
on whether an SMS or DMS table space is used.

When creating a buffer pool, by default, the page size is 4 KB, but you can
choose to have the page size set at one of these values: 4 KB, 8KB, 16 KB,
or 32 KB.
If buffer pools are created using one page size, then only table spaces
created using the identical page size can be associated with them. You
cannot alter the page size of the buffer pool following its creation.

Each database has at least one buffer pool (IBMDEFAULTBP, which is created
when the database is created), and you can have more also. All buffer pools
reside in the Database Global Memory (as shown in Fig. 39 on page 197),
which is available to all applications using the database. All buffer pools are
allocated when the first application connects to the database, or when the
database is explicitly activated using the ACTIVATE DATABASE command. Use
this ACTIVATE DATABASE command to keep buffer pool primed even if all the
connections terminate. This will be very useful when connection load is highly
dynamic (for example, Web servers).

As an application requests data out of the database, pages containing the
data are transferred to one of the buffer pools from disk. The next time an
application requests data, the buffer pool is checked first to see if the data is
there in the memory area; if it is found, BPS does not need to read data from
the disk. Avoiding data retrieval from disk storage results in faster
performance. If the buffer pools are not large enough to keep the required
data in memory, the BPS has to read data from disk. Pages are not written
back to the disk until the page is changed, or one of the following occurs:

• All applications disconnect from the database.

• The database is explicitly deactivated.
Chapter 6. Tuning configuration parameters 209

• The database quiesces (that is, all connected applications have
committed)

• Space is required for another incoming page

• A page cleaner is available (NUM_IOCLEANERS database configuration
parameter is not zero) and is activated by the database manager.

The BUFFPAGE database configuration parameter controls the size of a buffer
pool when the CREATE BUFFERPOOL or ALTER BUFFERPOOL statement was run with
NPAGES -1; otherwise, the BUFFPAGE parameter is ignored and the buffer pool
will be created with the number of pages specified by the NPAGES parameter.
Thus, each buffer pool that has a NPAGES value of -1 uses BUFFPAGE.

To determine whether the BUFFPAGE parameter is active for a buffer pool, issue
this command:

SELECT * FROM SYSCAT.BUFFERPOOLS

Instead of using the BUFFPAGE configuration parameter, you can use the CREATE

BUFFERPOOL and ALTER BUFFERPOOL SQL statements to create and change buffer
pools and their sizes. See SQL Reference, SC09-2974 for the syntax.

6.5.1.1 Buffer pool hit ratio and index pool hit ratio
If you create your own buffer pools in addition to the default buffer pool, you
must be careful how you allocate space for each one. Allocating a large buffer
pool to a table space containing a large number of small, rarely used tables
and a small buffer pool to a tables space containing a large, frequently
accessed table will lead to performance problems. The size of the buffer
pools should reflect the size of table in the table space, and how frequently
they are updated or queried.

After changed pages are written out to disk, they are not removed from the
buffer pool unless the space they occupy is needed for other pages.

Note

NPAGES in SYSCAT.BUFFERPOOLS overrides BUFFPAGE.

Note
210 DB2 UDB V7.1 Performance Tuning Guide

The DB2 optimizer will utilize the different buffer pools to achieve the best
query performance. When selecting the access plan, the optimizer considers
the I/O cost of fetching pages from disk to the buffer pool. In its calculations,
the optimizer will estimate the number of I/Os required to satisfy a query. This
estimate includes a prediction of buffer pool usage, since additional physical
I/Os are not required to read rows in a page that is already in the buffer pool.
The optimizer considers the value of the NPAGES column in the BUFFERPOOLS
system catalog table in estimating whether a page will be found in the buffer
pool.

The I/O costs of reading the tables can have an impact on:

• How two tables are joined, for example, outer versus inner.

• Whether an index will be used to read the data.

AVG_APPLS parameter provides the optimizer with information regarding the
average number of active applications. This parameter is used by the
optimizer to determine how much of each buffer pool may be used for each
application. A value of 1 for this parameter will cause the optimizer to treat
the entire buffer pool is available to one application.

Snapshot monitor for buffer pools can be used to capture information on the
number of reads and writes and the amount of time taken. Before getting the
snapshot, set the buffer pool monitor switch on by performing either of the
following actions:

• Execute UPDATE MONITOR SWITCHES command which affect only the current
session.

• Update the DBF_MON_BUFPOOL database manager configuration parameter to
ON.

Snapshot monitor will provide information about buffer pool activity for all
active databases when you run the following command:

GET SNAPSHOT FOR ALL BUFFERPOOLS
Chapter 6. Tuning configuration parameters 211

The following example shows a snapshot for buffer pools:

If the server needs to read a page of data, and that page is already in the
buffer pool, then it will be accessed faster than the one from the disk. It is
then desirable to “hit” as many pages as possible in the buffer pool.

The following data elements can be measured to evaluate how the buffer pool
is being used:

• Buffer Pool Data Logical Reads: Denotes the total number of read data
requests that went through the buffer pool.

• Buffer Pool Data Physical Reads: Denotes the number of read requests
performed that required I/O to place data pages in the buffer pool.

• Buffer Pool Index Logical Reads: Denotes the total number of read
requests for index pages that went through the buffer pool.

Bufferpool Snapshot

Bufferpool name = TPCDDATABP
Database name = TPC
Database path = /database/db2inst1/NODE0000/SQL0000
1/
Input database alias =
Buffer pool data logical reads = 4473
Buffer pool data physical reads = 207
Buffer pool data writes = 20
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Total buffer pool read time (ms) = 218
Total buffer pool write time (ms) = 0
Asynchronous pool data page reads = 200
Asynchronous pool data page writes = 20
Buffer pool index writes = 0
Asynchronous pool index page reads = 0
Asynchronous pool index page writes = 0
Total elapsed asynchronous read time = 131
Total elapsed asynchronous write time = 0
Asynchronous read requests = 7
Direct reads = 0
Direct writes = 0
Direct read requests = 0
Direct write requests = 0
Direct reads elapsed time (ms) = 0
Direct write elapsed time (ms) = 0
Database files closed = 0
Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0
212 DB2 UDB V7.1 Performance Tuning Guide

• Buffer Pool Index Physical Reads: Denotes the number of read requests
for index pages that require I/O activity to place index pages in the buffer
pool.

The buffer pool hit ratio indicates the percentage of time that the database
manager did not need to load a page from disk in order to service a page
request. That is, the page was already in the buffer pool. The greater the
buffer pool hit ratio, the lower the frequency of disk I/O.

The overall buffer pool hit ratio can be calculated as the difference between
the number of all (data + index) logical reads and number of all (data + index)
physical reads divided by the total number of read requests.

Similarly, an index pool hit ratio is calculated as the difference between the
number of the index logical reads and the number of index physical reads
divided by the total number of index read requests.

Increasing buffer pool size will generally improve the hit ratio, but you will
reach a point of diminishing returns. Ideally, if you could allocate a buffer pool
large enough to store your entire database, then once the system is up and
running, you would get a hit ratio of 100%. However, this is unrealistic in most
cases. The significance of the hit ratio depends on the size of your data, and
the way it is accessed.

For a large database, increasing the buffer pool size may have minimal effect
on the buffer pool hit ratio. Its number of data pages may be so large, that the
statistical chances of a hit are not improved increasing its size. But you might
find that tuning the index buffer hit ratio achieves the desired result. This can
be achieved using two methods:

1. Split the data and indexes into two different buffer pools and tune them
separately.

2. Use one buffer pool, but increase its size until the index hit ratio stops
increasing.

BufferPoolHitRatio ΣLogicalReads ΣPhysicalReads–
ΣLogicalReads

-- 100×=

IndexPoolHitRatio ΣIndexLogicalReads Σ IndexPhysicalReads–
ΣIndexLogicalReads

--- 100×=
Chapter 6. Tuning configuration parameters 213

The first method is often more effective, but because it requires indexes and
data to reside in different table spaces, it may not be an option for existing
databases. It also requires you to tune two buffer pools instead of one, which
can be a more difficult task, particularly when memory is constrained.

A very large database where data is accessed evenly would have a poor hit
ratio. There is little you can do with very large tables. In such a case, you
would focus your attention on smaller, frequently accessed tables, and on the
indexes — perhaps assigning them to individual buffer pools, in which you
can aim for higher hit ratios.

The index pool hit ratio and the buffer pool hit ratio are influenced by data
reorganization. it is always advisable to perform a REORGCHK command to
check these hit ratios before tuning.

6.5.1.2 Prefetching
Prefetching means retrieving one or more pages from disk in anticipation of
their use. Prefetching index and data pages into the buffer pool can help
improve performance by reducing the time spent waiting for I/O to complete.
Setting the prefetch size has significant performance implications, particularly
for large table scans.

Prefetchers are used to bring data into the buffer pool and also look after
dropping temporary tables. Page cleaners are used to move data from the
buffer pool back out to disk. For example, applications needing to scan
through large volumes of data would have to wait for data to be moved from
disk to buffer pool, if there were no data prefetchers. Agents of the application
send asynchronous read-ahead requests to a common prefetch queue. When
prefetchers are available, they perform these requests by using big-block or
scatter read operations to bring the requested pages from disk to the buffer
pool.

To enable prefetching, the database manager starts separate threads of
control, known as I/O servers, to perform page reading. As a result, the query
processing can be separated into two parallel activities: data processing
(CPU) and data page I/O. The I/O servers wait for prefetch request from the
CPU processing activity. No more than this number of I/Os for prefetching
and utilities can be in progress for a database at any time. Non-prefetch I/Os
are scheduled directly from the database agents.

If the prefetchers and page cleaners are not specified, then the application
agents would have to do all the reading and writing of data between the buffer
pool and disk storage.
214 DB2 UDB V7.1 Performance Tuning Guide

A good value, in order to fully exploit all the I/O devices in the system, is 1 or
2 more than the number of physical devices on which the database resides.
Since any unused I/O servers will remain idle and associated overhead with
each I/O server is minimum, it is always better to have additional I/O servers.

The number of prefetchers (NUM_IOSERVERS) is set to at least the number of
physical disks in the database to maximize the opportunity for parallel I/O.
Because one I/O server can serve only one I/O device (disk), it is
recommended to configure one or more NUM_IOSERVERS than the number of
physical devices on which the table space container reside. It is better to use
additional I/O servers because of its minimal overhead.

Efficient I/O can be obtained in DSS, since prefetchers provide asynchronous
access, big blocks, and use parallel I/Os. Thus, the agents seldom need to
wait on the flush of a dirty page.

In OLTP environments, page cleaners provide background buffer pool page
cleaning, so that the agents rarely need to wait on the flush of a dirty page.

6.5.1.3 Page cleaners
Pages in the buffer pool can have different attributes:

• “In-use” pages are currently being read or updated.
• “Dirty” pages are waiting to be “cleaned”.

Dirty pages are pages where data has been changed but has not yet been
written to disk. After a page is written to disk, it is considered clean, and
remains in the buffer pool.Page cleaners check the buffer pool, and write
pages asynchronously to disk. Page cleaners basically perform two
operations:

• Assure that an agent will always find free pages in the buffer pool.

• Copy the oldest unwritten change of Logical Sequence Number (LSN) to
the buffer pool.

Without the existence of the independent page cleaners, the DB2 agents
have to clean dirty pages by themselves, and the application being served by
these agents ends up with a poor response.

Pages are written from buffer pool to disk when the percentage of space
occupied by changed pages in the buffer pool has exceeded the value
specified in the CHNGPGS_THRESH configuration parameter. Page cleaner agents
(NUM_IOCLEANERS) write out changed pages to disk. Page cleaners are
sometimes referred to as asynchronous page cleaners or asynchronous
buffer writes because they are independent of DB2 agents.
Chapter 6. Tuning configuration parameters 215

The NUM_IOCLEANERS parameter allows you to specify the number of
asynchronous page cleaners for a database. These page cleaners write
changed pages from the buffer pool to disk before the space in the buffer pool
is required by a database agent. This means that the agents will not wait for
changed pages to be written out. As a result, your application’s transaction
can run faster.

You may use the changed pages threshold (CHNGPGS_THRESH) to specify the
level (in percentage) of changed pages at which the asynchronous page
cleaners will be activated, if they are not currently active. When the page
cleaners are started, they will build a list of pages to write to disk. Once they
have completed writing those pages to disk, they will become inactive again
and wait for the next trigger to start. For the databases with a heavy update
transaction workload, setting CHNGPG_THRESH to default (60) is recommended. A
percentage larger than the default can help performance if your database has
a small number of very large tables.

If the NUM_IOCLEANERS parameter is zero (0), no page cleaners are started and,
as a result, database agents will perform all the page writes from the buffer
pool to disk. If you have many physical storage devices, this leads to a
significant performance impact, and there is a greater chance that one or
more devices will be idle.

6.5.1.4 Tuning disk I/O: summary
When tuning the buffer pool size, the goal is to reduce the number of I/O
operations by placing the data pages in the buffer pool before they are
needed. Applications will wait on synchronous I/Os, so buffer pool operations
performed by I/O cleaners (writing pages from the buffer pool to disk) should
be performed asynchronously whenever possible. The configuration
parameters involved are:

• BUFFPAGE
• PREFETCHSIZE
• NUM_IOCLEANERS
• CHNGPGS_THRESH
• NUM_IOSERVERS

To detect if the buffer pool is undersized, the best way is to:

• Check the number of times the page cleaners were triggered.

• Check I/O servers not prefetching as many pages as expected.
216 DB2 UDB V7.1 Performance Tuning Guide

The first approach, used when tuning the buffer pool size, is to increase the
buffer pool until you get a good index pool hit ratio (around 80%). Then
perform tuning on other configuration parameters: NUM_IOCLEANERS,
CHNGPGS_THRESH, NUM_IOSERVERS and PREFETCHSIZE.

A good value for the number of page cleaner (NUM_IOCLEANERS), in an OLTP
environment, is the number of physical devices/disks used by the database
+2. The default is 1. Use larger values for update-intensive workloads, or
when the number of data or index page writes is large with respect to the
number of async data or index page writes. In a DSS environment, the
number of CPU is a good value for NUM_IOCLEANERS. To monitor the I/O
cleaners activity, execute the following command:

db2 get snapshot for database on <dbname> | grep writes

The output would be like the following:

A good value for CHNGPGS_THRESH is to use default value (60%), is suitable for
typical workloads. A percentage larger than the default can help performance
if your database has a small number of very large tables.

The number of prefetchers (NUM_IOSERVERS) is set to at least the number of
physical disks in the database to maximize the opportunity for parallel I/O.
Because one I/O server can serve only one I/O device (disk), it is
recommended to configure one or more NUM_IOSERVERS than the number of
physical devices on which the table space container reside. It is better to use
additional I/O servers because of its minimal overhead.

When sequential I/O is important (for example, DSS workloads) ensure DMS
table spaces are set up well for prefetching and parallel I/O:

1. Multiple containers, ideally at least 5

2. Each container mapped to its own disk(s)

3. Set PREFETCHSIZE to at least (#containers * EXTENTSIZE)

For most purposes, PREFETCHSIZE should be set to #containers * EXTENTSIZE. If
you want more aggressive prefetching you can double this, or reduce it if you
want to have a less aggressive prefetching, but it is recommended to have a

Buffer pool data writes = 0
Asynchronous pool data page writes = 0
Buffer pool index writes = 0
Asynchronous pool index page writes = 0
Direct writes = 72
Chapter 6. Tuning configuration parameters 217

multiple of EXTENTSIZE. Note that over-prefetching wastes buffer pool space,
and that under-prefetching leads to prefetch wait time, or the agent ends up
doing the I/O.

If you do increase the PREFETCHSIZE beyond the above suggestion, then
ensure that the NUM_IOSERVERS database configuration parameter is at least
PREFETCHSIZE/EXTENTSIZE. To disable prefetching on a table space, you can set
PREFETCHSIZE to zero.

6.5.2 Extended STORagE (ESTORE)
When your machine has more real addressable memory than the maximum
amount of virtual addressable memory (between 2 GB to 4 GB on most
platforms), then you can configure additional real addressable memory
beyond virtual addressable memory as an extended storage cache. Such an
extended storage cache can be used by any of the defined buffer pools and
should improve the performance of the database manager. The extended
storage cache is defined in terms of memory segments.

ESTORE is a second level page cache, and the buffer pool is the primary
cache. Because an extended storage cache is an extension to a buffer pool, it
must always be associated with one or more specific buffer pools. Each
buffer pool can be configured to use it or not. ESTORE is used when the
amount of memory that is allowed to be mapped by a single process is less
than the total amount of memory available. For UNIX platforms, this extra
memory can be accessed by cycling many segments through one address.

Copying pages to and from ESTORE costs CPU (for both the copies and
attaches), but it saves I/O every time a disk read is avoided. If you are
continually copying pages to ESTORE but rarely read from it, or if you are
already more CPU-bound than I/O-bound, then ESTORE will not help much in
performance.

ESTORE, on AIX, works by allocating number of extended storage memory
segments available for use by the database (NUM_ESTORE_SEGS) and the number
of pages in each extended memory segments in the database
(ESTORE_SEG_SIZE).

On AIX, when the total number of pages allocated to ESTORE is
(NUM_ESTORE_SEGS * ESTORE_SEG_SIZE). While allocating the ESTORE, ensure
that the NUM_ESTORE_SEGS should be at least two. If the number of segments is
one, then you should turn off ESTORE and allocate the pages to the buffer
pools, because you can allocate the same amount of memory to buffer
pool(s). Also ensure that your ESTORE segment size is less than 256 MB.
218 DB2 UDB V7.1 Performance Tuning Guide

To exploit main memories larger than 4 GB on 32-bit systems, you have the
following two options:

• Use ESTORE. It is used especially for read-mostly workloads, or
workloads involving large temporary tables that would otherwise spill to
disk.

• Also, use DB2_MMAP_READ=NO and DB2_MMMAP_WRITE=NO registry settings on AIX
and SMS or DMS FILE table space containers. This frees up an extra
256 MB memory segment and enables the use of the AIX JFS file system
cache.

See 3.4.3, “Extended storage” on page 76 for additional information, such as
when to use and when not to use ESTORE.

6.5.3 Logging
All changes to data pages are logged, and the updated data page is not
written to disk storage before its associated log record is written to the log.
Therefore, improving the logging performance is very important to improve
the overall performance if your application performs frequent updates. The
following configuration parameters affect the logging performance.

6.5.3.1 Log buffer size
Buffering the log records will result in more efficient logging file I/O because
the log records will be written to disk less frequently and more log records will
be written at each time. The number of write operations is also higher if there
is not enough space in the log buffer.

The log records are written to disk when one of the following occurs:

1. A transaction commits, or a group of transactions commits (MINCOMMIT).

2. The log buffer is full.

3. As a result of some other internal database manager event.

Log Buffer, whose size is determined by LOGBUFSZ database configuration
parameter, holds log records in storage until they are written to disk. Ensure
that the log buffer should be large enough to hold the amount of space
needed to perform a rollback of current uncommitted transactions without
having to read data from the log files.

When you set the log buffer size, consider the size of database heap (DBHEAP),
since LOGBUFSZ allocated from the database heap (DBHEAP). Also note that
using larger log buffers will not reduce data integrity, as data base commits
will still force log file writes.
Chapter 6. Tuning configuration parameters 219

For OLTP workloads, it is recommended to increase the default log buffer
(logbufsz).

6.5.3.2 MINCOMMIT database configuration parameter
By default, write operations to log files will be performed every time a
transaction is committed. These write operations to log files can be reduced
by grouping commits together. This will reduce the number of writes, thus
improving the performance of the database, as a compromise with the
response time of small transactions, since they have to wait for other
transactions to commit their work.

If there are not enough transactions to commit their work, the database
manager will commit transactions every second.

When transactions are short, the log I/O can become a bottleneck due to the
frequency of the flushing of the log at COMMIT time. In such environments,
setting the MINCOMMIT configuration parameter to a value greater than 1 can
remove the bottleneck. When a value greater than 1 is used, the COMMITs
for several transactions are held or batched. The first transaction to COMMIT
waits until (MINCOMMIT - 1) more transactions COMMIT; and then the log is
forced to disk and all transactions respond to their applications. The result is
only 1 log I/O instead of several individual log I/Os.

By increasing MINCOMMIT and grouping the COMMITs, an increase in efficient
file I/O logging will be achieved, as it will occur less frequently and write more
log records each time a write is required. In order to avoid an excessive
degradation in response time, each transaction only waits up to 1 second for
the (MINCOMMIT - 1) other transactions to COMMIT. If the 1 second of time
expires, the waiting transaction will force the log itself and respond to its
application.

Changes to the value specified for this parameter take effect immediately;
you do not have to wait until all applications disconnect from the database.

Increase or change in this parameter from its default value when there are
multiple or write applications typically request concurrent database
COMMITs. This will result in writing more log records each time it occurs. If
you increase MINCOMMIT, you may also need to increase the LOGBUFSZ

parameter to avoid having a log-full buffer force a write during these heavy
load periods.

For OLTP workloads, it is recommended to increase MINCOMMIT to a value of
10 or more.
220 DB2 UDB V7.1 Performance Tuning Guide

6.5.3.3 SOFTMAX database configuration parameter
The SOFTMAX database configuration parameter represents the percentage of
LOGFILSIZ when a softcheck point will either write the log control file to disk or
call an asynchronous page cleaner.

If you use very large log files, consider lowering this parameter, as this will
reduce the time required to restart a database in the event of a crash
recovery. However, lowering the value can increase the database logging
overhead, which may impact performance. Lowering the value is not
recommended if you have relatively small log files, as the checkpoint will be
reached when these logs become full. See Administration Guide:
Performance, SC09-2945 for additional information.

6.5.3.4 LOGFILSIZ database configuration parameter
The LOGFILSIZ parameter defines the size of each primary and secondary log
file. Increase the LOGFILSIZ database configuration parameter if the database
has a large number of update/delete/insert transactions, because these
transactions cause the log file to become full very quickly, for example, OLTP
workloads. A log file that is too small can affect system performance because
of the overhead of archiving old log files, allocating new log files, and waiting
for a usable log file.

Setting LOGFILESIZ to an excessively high value has a negative impact, such
as:

• Taking a long time to create the log files

• Reducing your flexibility when managing archived log files and copies of
log files, since some media may not be able to hold an entire log file

If the disk space is scarce, the value of the LOGFILSIZ should be reduced,
since primary logs are preallocated at this size.

6.5.3.5 Audit buffer size
The DB2 Audit Facility generates, and allows you to maintain, an audit trail
for a series of predefined database and instance events. The records
generated from this facility are kept in an audit log file.

The timing of the writing of auditing records to the audit log file can have a
significant effect on the performance of databases in the instance. The writing
of audit records can take place synchronously or asynchronously with the
occurrence of the events causing the generation by those records.
Chapter 6. Tuning configuration parameters 221

Setting the database manager configuration parameter AUDIT_BUF_SZ=0 means
that the writing is done synchronously (default). The event generating the
audit record will wait until the record is written to disk.

Settings greater than 0 indicate that audit records will be written
asynchronously to disk storage and improve performance. The value is the
number of 4 KB pages for an internal buffer allocated in the Database
Manager Shared Memory. If you choose asynchronous mode, the event
generating the audit record will not wait and can continue its operation.

In asynchronous mode, there maybe some records lost if an error occurs
when they are written into disk. If asynchronous, since we buffer (audit_bf_sz
* 4096) bytes worth of data, if a write error occurs, then you will lose that
amount of data. If synchronous, you will lose a single record at the time when
the write fails.

For more information about the DB2 Audit Facility, refer to “Auditing DB2
Activities” in the DB2 UDB Administration Guide: Planning, SC09-2946.

6.6 Network related parameters

Here we discuss a few configuration parameters that improve communication
between the client and the server. These parameters mainly depends on the
server’s resource allocation and applications.

6.6.1 Number of TCP/IP connection managers
Prior to the Version 7.1 release, when working in a client-server environment
where TCP/IP is used for communication, one connection manager is
created, irrespective of the number of processors in the system. Since
Version 7.1, more than one connection manager can be created using
DB2TCPCONNMGRS registry variable. You can create up to a maximum of 8
connection managers. If the value is not set, the default number of
connection managers will be created. The default value is 1 on single
processor machines. For SMP machines, the default number of the TCP/IP
connection managers is calculated using:

Square Root(# of processors) rounded up to the maximum value of 8

The default value can be overridden when the DB2TCPCONNMGRS registry value is
set; then the number of TCP/IP connection managers specified (to the
maximum of 8) will be created.

If the DB2TCPCONNMGRS value is less than 1, then the DB2TCPCONNMGRS value is set
to 1, and a warning message is logged that the value is out of range.
222 DB2 UDB V7.1 Performance Tuning Guide

If the DB2TCPCONNMGRS value is greater than 8, then the DB2TCPCONNMGRS value is
set to 8, and a warning message is logged that the value is out of range.

If the DB2TCPCONNMGRS values are between 1 and 8, then they are used as
given.

When there is greater than one connection manager created, connection
throughput should improve when multiple client connections are received
simultaneously.

6.6.2 Blocking
Row blocking is a technique that reduces database manager overhead by
retrieving a block of rows in a single operation. These rows are stored in a
cache, and each fetch request in the application gets the next row from the
cache. When all the rows in a block have been processed, another block of
rows is retrieved by the database manager.

The cache is allocated when an application issues an OPEN CURSOR request and
is deallocated when the cursor is closed. The size of the cache is determined
by a configuration parameter which is used to allocate memory for the I/O
block. The parameter used depends on whether the client is local or remote:

• For local applications, the parameter ASLHEAPSZ is used to allocate the
cache for row blocking

• For remote applications, the parameter RQRIOBLK (client I/O block size) on
the client workstation is used to allocate the cache for row blocking. The
cache is allocated on the database client

For local applications, you can use the following formula to estimate how
many rows are returned per block:

Rows per block = ASLHEAPSZ * 4096 / ORL

Here, ASLHEAPSZ is in pages of memory 4096 is the number of bytes per page,
and ORL is the output row length in bytes.

For remote applications, you can use the following formula to estimate how
many rows are returned per block:

Rows per block = RQRIOBLK / ORL

Here, RQRIOBLK is in bytes of memory, and ORL is the output row length in
bytes.
Chapter 6. Tuning configuration parameters 223

Note that if you use the FETCH FIRST n ROWS ONLY clause or the OPTIMIZE FOR n

ROWS clause in a SELECT statement, the number of rows per block will be the
minimum of the following:

• The value calculated in the above formula

• The value of n in the FETCH FIRST clause

• The value of n in the OPTIMIZE FOR clause

Refer to the SQL Reference, SC09-2974 for more information about cursors.

6.6.2.1 Application support layer heap size (ASLHEAPSZ)
The application support layer heap size is the communication buffer between
the local application and its associated agent. For local applications, the
ASLHEAPSZ parameter is used to allocate cache for row blocking. This buffer is
allocated as shared memory by each database manager agent that is started.

By default, this value is 15 (4 KB) pages. This value can contain an average
request or reply between the application and its agent. Its size can be
increased if queries retrieving large amounts of data.

If the request or reply do not fit into the buffer, they will be split into two or
more send-and-receive buffers. This size should be set appropriately, so that
it is able to handle the majority of requests using a single send-and-receive
buffer. The size of the request is based on the storage required to hold:

• The input SQLDA

• All of the associated data in the SQLVARs

• The output SQLDA

• Other fields which do not generally exceed 250 bytes

This parameter is also used to determine the I/O block size when a blocking
cursor is opened and allocated in the application’s private address space. So,
this is an additional parameter to be considered while allocating an optimal
amount of private memory for each application program. If the database client
cannot allocate space for a blocking cursor out of an application’s private
memory, then a non-blocking cursor will be opened.

The ASLHEAPSZ parameter is used to determine the initial size of the query
heap for both local and remote clients. The maximum size of the query heap
is defined by the QUERY_HEAP_SZ parameter. QUERY_HEAP_SZ is the set of
contiguous memory allocated by the database manager to receive the data
sent by the local application. The query heap is used to store each query in
the agent’s private memory.
224 DB2 UDB V7.1 Performance Tuning Guide

The information for each query consists of:

• Input SQLDA
• Output SQLDA
• The statement text
• SQLCA
• The package name
• Creator
• Session number
• Consistency token

This query heap parameter is provided to ensure that an application does not
consume unnecessarily large amount of virtual memory within an agent, and
it initially set with the value equal to ASLHEAPSZ.

The formula to calculate the ASLHEAPSZ value in number of pages is as follows:

aslheapsz >=(sizeof(input SQLDA) +
sizeof (each input SQLVAR)+sizeof(output SQLDA)+ 250)
/ 4096

You can reduce the size of the ASLHEAPSZ value when:

• The application requests size is small.

• Application is running on a memory constrained system.

You can increase the size of the ASLHEAPSZ value when:

• The queries are very large and require more than one send and receive
request.

• The application is not running on a memory constrained system.

Larger record blocks may also cause more fetch requests than are actually
required by the application. Control the fetch requests by using the OPTIMIZE
FOR clause on the SELECT statement in your application.

6.6.2.2 Client I/O block size (RQRIOBLK)
This parameter specifies the size of the communication buffer between
remote applications and their database agents on the database server. The
client I/O block of memory is used to serve the request and replies from and
to remote applications. When a database client requests a connection to a
remote database, this communication buffer is allocated on the client.
Chapter 6. Tuning configuration parameters 225

On the database server, a communication buffer of 32767 bytes is initially
allocated, until a connection is established and the server can determine the
value of RQRIOBLK at the client. Once the server knows the RQRIOBLK value, it
will reallocate its communication buffer if the value on the client is not 32767
bytes. It is independent of the protocol used to connect the client and server.

In addition to the communication buffer, the RQRIOBLK parameter is also used
to determine the I/O block size at the database client when a blocking cursor
is opened. This memory for blocked cursors is allocated out of application’s
private address space, so you should determine the optimal amount of
private memory to allocate for each application program. If the database
client cannot allocate space for a blocking cursor out of an application’s
private memory, a non-blocking cursor will be opened.

You need to increase the value of RQRIOBLK for the following conditions or
scenarios:

• A single SQL statement transmits large data (for example, large object
data).

• The number or size of rows being transferred is large (for example, if the
amount of data is greater than 4096 bytes). However, this will increase the
size of the working set memory for each connection, a trade-off has to be
done.

• Larger record blocks may also cause more fetch requests than are
actually required by the application. Control the fetch requests by using
the OPTIMIZE FOR clause on the SELECT statement in your application.

6.6.2.3 DOS requester I/O block size (DOS_RQRIOBLK)
This parameter specifies the size of the communication buffer (requester I/O
block size) between DOS/Windows 3.1 applications and their database
agents on the database server. The DOS_RQRIOBLK parameter applies only to
DOS clients, while the RQRIOBLK parameter applies to non-DOS clients.

Applications use heaps to exchange information between the application and
the agent. The heap is also used for row blocking, which retrieves a block of
rows in a single operation. This parameter, DOS_RQRIOBLK, is also used to
determine the I/O block size at the database client when a blocking cursor is
opened. This memory for blocked cursors is allocated out of application’s
private address space. If the database client cannot allocate space for a
blocking cursor out of an application’s private memory, a non-blocking cursor
will be opened.
226 DB2 UDB V7.1 Performance Tuning Guide

The memory area is allocated when the application opens a cursor. Blocking
will be used depending on the options specified when precompiling and
binding the application. The default size is 4 KB. It is independent of the
protocol used to connect the client and server.

You increase the value of DOS_RQRIOBLK for the following conditions/scenarios:

• A single SQL statement transmits large data (for example, large object
data).

• Number or size of rows being transferred is large (for example, if the
amount of data is greater than 4096 bytes). However, as this will increase
the size of the working set memory for each connection, a trade-off has to
be reached.

• Larger record blocks may also cause more fetch requests than are
actually required by the application. You can control the fetch requests by
using the OPTIMIZE FOR clause on the SELECT statement in your
application.
Chapter 6. Tuning configuration parameters 227

228 DB2 UDB V7.1 Performance Tuning Guide

Chapter 7. Tuning application performance

When you are trying to design a new database system or analyze an existing
database system, one of the most important considerations is your
application design. Even though your database is well designed and tuned,
inappropriate design of applications may cause performance problems. If
your application has a design problem, fixing this often improves the
application performance much more than tuning the configuration parameters
of DB2 UDB.

For example, SQL is a high-level language with much flexibility. Different
SELECT statements can be written to retrieve the same data; however, the
performance can vary for the different forms of SELECT statements. This is
because one statement may have a higher processing cost than another. In
such a case, you should choose the SQL statement which has the lower
processing cost, so that the application will have good performance.

In this section, we will discuss application design considerations to obtain
better performance. These include:

• Tips to write better SQL statements

• Minimizing data transmission between applications and the database

• Considerations for embedded SQL programs

• Considerations for ODBC/CLI programs

• Concurrency on database objects

Study this chapter and apply these considerations when you develop or
evaluate your database applications.

7.1 Writing better SQL statements

DB2 UDB provides the SQL compiler which creates the compiled form of SQL
statements. When the SQL compiler compiles SQL statements, it rewrites
them into a form that can be optimized more easily. This is known as query
rewrite.

The SQL compiler then generates many alternative execution plans for
satisfying the user’s request. It estimates the execution cost of each
alternative plan using the statistics for tables, indexes, columns, and
functions, and chooses the plan with the smallest execution cost. This is
known as query optimization.
© Copyright IBM Corp. 2000 229

It is important to note that the SQL compiler (including the query rewrite and
optimization phases) must choose an access plan that will produce the result
set for the query you have coded. Therefore, as noted in many of the
following guidelines, you should code your query to obtain only the data that
you need. This ensures that the SQL compiler can choose the best access
plan for your needs.

Guidelines for using a SELECT statement are these:

• Specify only needed columns.

• Limit the number of rows.

• Specify the FOR UPDATE clause if applicable.

• Specify the OPTIMIZED FOR n ROWS clause.

• Specify the FETCH FIRST n ROWS ONLY clause if applicable.

• Specify the FOR FETCH ONLY clause if applicable.

• Avoid numeric data type conversion.

Each of these guidelines are further explored in the next section.

7.1.1 Specify only needed columns in the select list
Specify only those columns that are needed in the select list. Although it may
be simpler to specify all columns with an asterisk (*), needless processing
and returning of unwanted columns can result.

7.1.2 Limit the number of rows by using predicates
Limit the number of rows selected by using predicates to restrict the answer
set to only those rows that you require. There are four categories of
predicates, each with its own processing cost. The category is determined by
how and when that predicate is used in the evaluation process. These
categories are listed below, ordered in terms of performance, starting with the
most favorable:

• Range delimiting predicates

• Index SARGable predicates

• Data SARGable predicates

• Residual predicates
230 DB2 UDB V7.1 Performance Tuning Guide

Range delimiting predicates are those used to bracket an index scan. They
provide start and/or stop key values for the index search. Index SARGable
predicates are not used to bracket a search, but can be evaluated from the
index because the columns involved in the predicate are part of the index key.
For example, assume that an index has been defined on the NAME, DEPT, and
YEARS columns of the STAFF table, and you are executing the following select
statement:

The first two predicates (name=’John’, dept=10) would be range delimiting
predicates, while years > 5 would be an index SARGable predicate, as the
start key value for the index search cannot be determined by this information
only. The start key value may be 6, 10, or even higher. If the predicate for the
years column is years => 5, it would be a range delimiting predicate, as the
index search can start from the key value 5.

The database manager will make use of the index data in evaluating these
predicates, rather than reading the base table. These range delimiting
predicates and index SARGable predicates reduce the number of data pages
accessed by reducing the set of rows that need to be read from the table.
Index SARGable predicates do not affect the number of index pages that are
accessed.

SARGable refers to something that can be used as a search argument.

Note

SELECT name, job, salary FROM staff
WHERE name = ’John’

dept = 10
years > 5

SELECT name, job, salary FROM staff
WHERE name = ’John’

dept = 10
years => 5
Chapter 7. Tuning application performance 231

Data SARGable predicates are the predicates that cannot be evaluated by
the Index Manager, but can be evaluated by Data Management Services
(DMS). Typically, these predicates require the access of individual rows from
a base table. If required, Data Management Services will retrieve the columns
needed to evaluate the predicate, as well as any others to satisfy the columns
in the SELECT list that could not be obtained from the index.

For example, assume that a single index is defined on the projno column of
the project table but not on the deptno column, and you are executing the
following query:

The predicate deptno='D11' is considered data SARGable, because there are
no indexes on the deptno column, and the base table must be accessed to
evaluate the predicate.

Residual predicates, typically, are those that require I/O beyond the simple
accessing of a base table. Examples of residual predicates include those
using quantified sub-queries (sub-queries with ANY, ALL, SOME, or IN), or reading
LONG VARCHAR or large object (LOB) data (they are stored separately from the
table).

These predicates are evaluated by Relational Data Services (RDS). Residual
predicates are the most expensive of the four categories of predicates.

As residual predicates and data SARGable predicates cost more than range
delimiting predicates and index SARGable predicates, you should try to limit
the number of rows qualified by range delimiting predicates and index
SARGable predicates whenever possible.

Let us briefly look at the following DB2 components: Index Manager, Data
Management Service, and Relational Data Service. Figure 41 shows each
DB2 component and where each category of predicates is processed.

SELECT projno, projname, repemp FROM project
WHERE deptno=’D11’
ORDER BY projno
232 DB2 UDB V7.1 Performance Tuning Guide

Figure 41. DB2 UDB components and predicates

Relational Data Service (RDS) receives SQL requests from applications and
returns the result set. It sends all predicates to Data Management Service
(DMS) except residual predicates. Residual predicates are evaluated by
Relational Data Service (RDS).

DMS evaluates data SARGable predicates. Also, if the select list has
columns which cannot be evaluated by the index search, DMS scans data
pages directly.

Index Manager receives range delimiting predicates and index SARGable
predicates from DMS, evaluates them, and then returns row identifiers (RIDs)
to the data page to DMS.

Applications

Relational Data Service

Data Management Service

Index Manager

Data

Range delimiting predicates

Index SARGable predicates

Data SARGable predicates

Residual predicates

Figure 41 provides a simplified explanation. Actually, DB2 has more
components than are shown in this diagram.

Note
Chapter 7. Tuning application performance 233

7.1.3 Specify the FOR UPDATE clause
If you intend to update fetched data, you should specify FOR UPDATE clause in
the SELECT statement of the cursor definition. By doing this, the database
manager can initially choose appropriate locking levels, for instance, U
(update) locks instead of S (shared) locks. Thus you can save the cost to
perform lock conversions from S locks to U locks when the succeeding UPDATE

statement is processed.

The other benefit to specifying the FOR UPDATE clause is that can decrease the
possibility of deadlock. As we will discuss later in 7.6.8.2, “Deadlock
behavior” on page 269, deadlock is a situation in which more than one
application is waiting for another application to release a lock on data, and
each of the waiting applications is holding data needed by other applications
through locking. Let us suppose two applications are trying to fetch the same
row and update it simultaneously in the following order:

1. Application1 fetches the row.

2. Application2 fetches the row.

3. Application1 updates the row.

4. Application2 updates the row.

On step 4, Application2 should wait for Application1 to complete the update
and release the held lock, and then start its updating. However, if you do not
specify the FOR UPDATE clause when declaring a cursor, Application1 acquires
and holds an S (shared) lock on the row (step 1). That means the second
application can also acquire and hold an S lock without lock-waiting (step 2).
Then the first application tries to get a U (update) lock on the row to process
an UPDATE statement, but must wait for the second application to release its
holding S lock (step 3). Meanwhile the second application also tries to get a U
lock and gets into the lock-waiting status due to the S lock held by the first
application (step 4). This situation is a deadlock, and the transaction of the
first or second application will be rolled back (see Figure 42).
234 DB2 UDB V7.1 Performance Tuning Guide

Figure 42. Deadlock between two applications updating same data

If you specify the FOR UPDATE clause in the DECLARE CURSOR statement, the U
lock will be imposed when Application1 fetches the row, and Application2 will
wait for Application1 to release the U lock. Thus, no deadlock will occur
between the two applications.

Here is an example of how to use the UPDATE OF clause in a SELECT statement.

DECLARE c1 CURSOR
OPEN c1
FETCH c1
UPDATE tablea

Application1

Tablea

row1

DEAD
LOCK!

DECLARE c1 CURSOR
OPEN c1
FETCH c1
UPDATE tablea

Application2

1. Acquire
S Lock

3. Try to get U Lock
and Wait

2. Acquire
S Lock

4.Try to get U Lock
and Wait

In this example, we assume either of the two applications does not use the
isolation level UR (Uncommitted Read). We will discuss isolation levels in
7.6, “Concurrency” on page 258.

Note

EXEC SQL DECLARE c1 CURSOR FOR select * from employee
FOR UPDATE OF job;

EXEC SQL OPEN c1;
EXEC SQL FETCH c1 INTO...;
if (strcmp (change,"YES") == 0)
EXEC SQL UPDATE employee SET job=:newjob
WHERE CURRENT OF c1;

EXEC SQL CLOSE c1;
Chapter 7. Tuning application performance 235

For CLI programs, you can set SQL_MODE_READ_WRITE to the DB2 CLI
connection attribute SQL_ATTR_ACCESS_MODE using SQLSetConnectAttr() the
function to achieve the same results. Refer to the SQLSetConnectAttr() section
of the Call Level Interface Guide and Reference, SC09-2950 for more
information.

7.1.4 Specify the OPTIMIZE FOR n ROWS clause
Specify the OPTIMIZE FOR n ROWS clause in the SELECT statement when the
number of rows you want to retrieve is significantly less than the total number
of rows that could be returned. Use of the OPTIMIZE FOR clause influences
query optimization based on the assumption that n rows will be retrieved. This
clause also determines the number of rows that are blocked in the
communication buffer.

Row blocking is a technique that reduces database manager overhead by
retrieving a block of rows in a single operation. These rows are stored in a
cache, and each FETCH request in the application gets the next row from the
cache. If you specify OPTIMIZE FOR 10 ROWS, a block of rows is returned to the
client every ten rows.

7.1.5 Specify the FETCH FIRST n ROWS ONLY clause
Specify the FETCH FIRST n ROWS ONLY clause if you do not want the application
to retrieve more than n rows, regardless of how many rows there might be in
the result set when this clause is not specified. This clause cannot be
specified with the FOR UPDATE clause.

For example, with the following coding, you will not receive more than 5 rows:

SELECT projno,projname,repemp FROM project
WHERE deptno=’D11’ OPTIMIZE FOR 10 ROWS

The OPTIMIZE FOR n ROWS clause does not limit the number of rows that can
be fetched or affect the result in any way other than performance. Using
OPTIMIZE FOR n ROWS can improve the performance if no more than n rows
are retrieved, but may degrade performance if more than n rows are
retrieved.

Note
236 DB2 UDB V7.1 Performance Tuning Guide

The FETCH FIRST n ROWS ONLY clause also determines the number of rows that
are blocked in the communication buffer. If both the FETCH FIRST n ROWS ONLY

and OPTIMIZE FOR n ROWS clause are specified, the lower of the two values is
used to determine the communication buffer size.

7.1.6 Specify the FOR FETCH ONLY clause
If you have no intention of updating rows retrieved by a SELECT statement,
specify the FOR FETCH ONLY clause in the SELECT statement. It can improve
performance by allowing your query to take advantage of row blocking. It can
also improve data concurrency since exclusive locks will never be held on the
rows retrieved by a query with this clause specified (see 7.6, “Concurrency”
on page 258).

7.1.7 Avoid data type conversions
Data type conversions (particularly numeric data type conversions) should be
avoided whenever possible. When two values are compared, it may be more
efficient to use items that have the same data type. For example, suppose
you are joining TableA and TableB using column A1 of TableA and column B1 of
TableB as in the following example.

If columns A1 and B1 are the same data type, no data type conversion is
required. But if they are not the same data type, a data type conversion
occurs to compare values at run time and it might affect the performance. For
example, if A1 is a decimal column and B1 is an integer column and each has
a value ‘123’, data type conversion is needed, as TableA stores it as x‘123C’,
whereas TableB stores it as x‘7B’.

SELECT projno,projname,repemp FROM project
WHERE deptno=’D11’
FETCH FIRST 5 ROWS ONLY

Instead of the FOR FETCH ONLY clause, you can also use the FOR READ ONLY

clause. ‘FOR READ ONLY’ is a synonym for ‘FOR FETCH ONLY’.

Note

SELECT * FROM TableA,TableB WHERE A1=B1
Chapter 7. Tuning application performance 237

Also, inaccuracies due to limited precision may result when data type
conversions occur.

7.1.7.1 Other considerations for data types
DB2 UDB allows you to use various data types. You can use SMALLINT,
INTEGER, BIGINT, DECIMAL, REAL, and DOUBLE for numeric data; CHAR, VARCHAR, LONG
VARCHAR, CLOB for character data; GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, and
DBCLOB for the double byte character data, and so on. As the amount of
database storage and the cost to process varies depending on the data type,
you should choose the appropriate data type.

The following are guidelines when choosing a data type:

• Use character (CHAR) rather than varying-length character (VARCHAR) for
short columns. The varying-length character data type can save database
storage when the length of data values varies, but there is a cost to check
the length of each data value.

• Use VARCHAR or VARGRAPHIC rather than LONG VARCHAR or LONG VARGRAPHIC. The
maximum length for VARCHAR and LONG VARCHAR columns, VARGRAPHIC and
LONG VARGRAPHIC are almost same (32,672 bytes for VARCHAR, 32,700 bytes
for LONG VARCHAR, 16,336 characters for VARGRAPHIC, and 16,350 characters
for LONG VARGRAPHIC), while LONG VARCHAR and LONG VARGRAPHIC columns have
several restrictions. For example, data stored in LONG VARCHAR or LONG
VARGRAPHIC columns is not buffered in the database buffer pool. See
4.1.1.4, “Use VARCHAR or LONG VARCHAR” on page 89 for further
description.

• Use integer (SMALLINT, INTEGER, BIGINT) rather than floating-point number
(REAL or DOUBLE) or decimal (DECIMAL) if you do not need to have the fraction
part. Processing cost for integers is much more inexpensive.

• Use date-time (DATE, TIME, TIMESTAMP) rather than character (CHAR).
Date-time data types consume less database storage, and you can use
some built-in functions for date-time data types such as YEAR and MONTH.

• Use numeric data types rather than character.

For detailed information about the supported data types, refer the DB2 UDB
SQL Reference, SC09-2974.
238 DB2 UDB V7.1 Performance Tuning Guide

7.2 Minimize data transmission

Network costs are often the performance gating factor for applications. A
good first step in investigating this is to run the application, or individual
queries from it, locally on the server and see how much faster it runs. That,
and the use of network monitoring tools, can indicate if network tuning or a
faster network is called for. Note that here “network” includes the local case,
since even though local connections have much less overhead than a
network protocol, the overhead is still significant.

If the network itself is in good shape, you should focus on reducing the
number of calls that flow from the application to the database (even for local
applications).

There are several ways to reduce network costs. Here we will introduce two
ways which involve having multiple actions take place through one call.

7.2.1 Compound SQL
Compound SQL is a technique to build one executable block from several
SQL statements. When compound SQL is being executed, each SQL
statement in the block is executed individually, but the number of requests
transmitting between client and server can be reduced.

Here is an example executing two UPDATE statements and one INSERT
statement using compound SQL:

If there is a relatively small set of queries in the application, db2batch is a
good tool to investigate the queries. See 5.4.5, “The db2batch utility” on
page 173.

Note

EXEC SQL BEGIN COMPOUND ATOMIC STATIC
UPDATE tablea SET cola = cola * :var1;
UPDATE tableb SET colb = colb + :var2;
INSERT INTO tablec (colc,cold,cole) VALUES (:i,:j,0);

END COMPOUND;
Chapter 7. Tuning application performance 239

When you execute compound SQL, you can choose two types of compound
SQL, atomic and non-atomic. The type determines how the entire block is
handled when one or more SQL statements in the block happen to end in
error. The type of the example above is atomic.

Atomic: If one of the statements in the block ends in error, the entire block is
considered to have ended in and error, and any changes made to the
database within the block will be rolled back.

Non-atomic: When all statements have completed, the application receives a
response. Even if one or more statements in the block end in error, the
database manager will attempt to execute all statements in the block. If the
unit of work containing the compand SQL is rolled back, then all changes
made to the database within the block will be rolled back.

You can also use compound SQL to improve performance of the IMPORT
utility, which repeats data inserts. When you specify MODIFIED BY COMPOUND=x

option (x is the number of inserts compounded into one block), the IMPORT
utility builds a block from multiple inserts. You will gain significant
performance improvement from this option. See the 8.3, “IMPORT utility” on
page 279 for more information.

7.2.2 Stored procedures
A stored procedure resides on a database server, where it executes, and
accesses the database locally to return information to client applications.
Using stored procedures allows a client application to pass control to a stored
procedure on the database server. This allows the stored procedure to
perform intermediate processing on the database server, without transmitting
unnecessary data across the network. Only those records that are actually
required are transmitted. This can result in reduced network traffic and better
overall performance.

A stored procedure also saves the overhead of having a remote application
pass multiple SQL statements to a database on a server. With a single
statement, a client application can call the stored procedure, which then
performs the database access work and returns the results to the client
application. The more SQL statements that are grouped together for
execution in the stored procedure, the larger the savings resulting from
avoiding the overhead associated with network flows for each SQL statement
when issued from the client.
240 DB2 UDB V7.1 Performance Tuning Guide

To create a stored procedure, you must write the application in two separate
procedures. The calling procedure is contained in a client application and
executes on the client. The stored procedure executes at the location of the
database on the database server.

If your system has a large number of stored procedure requests, you should
consider tuning some database manager configuration parameters, which are
explored in the following sections.

7.2.2.1 Nested stored procedures
Nested stored procedures are stored procedures that call another stored
procedure. Up to 16 levels of nested stored procedure calls are supported. By
using this technique, you can implement more complex procedural logic
without increasing client-side overhead.

7.2.2.2 Keep stored procedure processes
You can define two types of stored procedure, not-fenced or fenced.
Not-fenced procedures run in the database manager operating environment’s
process, whereas fenced procedures run in other processes to be insulated
from the internal resources on the database manager. Therefore, not-fenced
procedures can provide better performance, but could cause problems to the
database manager if they contain bugs.

In an environment in which the number of fenced stored procedure requests
is large, you should consider keeping a stored procedure process (called a
DARI process) idle after a stored procedure call is completed. This consumes
additional system resources; however, the performance of a stored procedure
can be improved because the database manager does not have to create a
new DARI process for each stored procedure request.

To keep DARI processes idle, set the database manager configuration
parameter KEEPDARI to YES. This is the default value. You can set this
configuration parameter by using the Control Center, or by executing the
following command from the Command Line Processor in the DB2 Server:

db2 UPDATE DBM CFG USING keepdari yes

Since the release of Version 7.1, you can write a stored procedure using
SQL statements within a CREATE PROCEDURE statement.

Note
Chapter 7. Tuning application performance 241

If you are developing a stored procedure, you may want to modify and test
loading the same stored procedure library a number of times. This default
setting, KEEPDARI=YES may interfere with reloading the library, and therefore
you need to stop the database manager to load the modified stored
procedure library. It is best to change the value of this keyword to no while
developing stored procedures, and then change it back to yes when you are
ready to load the final version of your stored procedure.

You can use the database manager configuration parameter MAXDARI to
control the maximum number of the DARI processes that can be started at
the DB2 server. The default value is dictated by the maximum number of
coordinating agents, which is specified by the MAX_COORDAGENTS database
manager configuration parameter. Since no more than one DARI process can
be active per coordinating agent, you cannot set a bigger value than the
maximum number of coordinating agents. Make sure this parameter is set to
the number of applications allowed to make stored procedure calls at one
time.

You can set the NUM_INITDARIS database manager configuration parameter to
specify the number of initial idle DARI processes when the database manager
is started. The default value is 0. By setting this parameter and the KEEPDARI

parameter, you can reduce the initial startup time for fenced stored
procedures.

7.2.2.3 Load Java Virtual Machine for stored procedure processes
When your application calls a fenced Java stored procedure, the DARI
process for the stored procedure loads the Java Virtual Machine (JVM).
Therefore, if you want to reduce the initial startup time for fenced Java stored
procedures, you should set the database manager configuration parameter
INITDARI_JVM=YES so that each fenced DARI process loads the JVM when
starting. This will reduce the initial startup time for fenced Java stored
procedures when used in conjunction with the NUM_INITDARI parameter and
KEEPDARI parameter.

This parameter could increase the initial load time for non-Java fenced stored
procedures, as they do not require the JVM.

For Java stored procedures, even though you set KEEPDARI=YES, you
can force DB2 to load new classes instead of stopping the database
manager. See “Refresh Java stored procedure classes” on page 243.

Note
242 DB2 UDB V7.1 Performance Tuning Guide

7.2.2.4 Refresh Java stored procedure classes
When a fenced DARI process executes a Java stored procedure, the process
loads the JVM, and the JVM locks the Java routine class for the stored
procedure. If you set KEEPDARI=NO, the lock will be released after the stored
procedure is completed and the DARI process is terminated; however, if you
set KEEPDARI=YES, the DARI process and the JVM is up even after the stored
procedure terminates. That means even though you update the Java routine
class for the stored procedure, DB2 will continue to use the old version of the
class.

To force DB2 to load the new class, you have two options. One is restarting
the database manager, which may be not always acceptable. The other
option is executing a SQLJ.REFRESH_CLASSES statement. By executing this
command, you can replace Java stored procedure classes without stopping
the database manager even if you set KEEPDARI=YES. Execute the following
from the command line:

db2 CALL SQLJ.REFRESH_CLASSES()

7.3 Embedded SQL program

Embedded SQL programs are those statements in which SQL statements are
embedded. You can write embedded SQL programs in the C/C++, COBOL,
FORTRAN, Java (SQLJ), and REXX programming languages, and enable
them to perform any task supported by SQL, such as retrieving or storing
data.

7.3.1 Static SQL
There are two types of embedded SQL statements: static and dynamic. Static
SQL statements are ones where the SQL statement type and the database
objects accessed by the statement, such as column names, are known prior
to running the application. The only unknowns are the data values the
statement is searching for or modifying.

You must pre-compile and bind such applications to the database so that the
database manager analyzes all of static SQL statements in a program,
determines its access plan to the data, and store the ready-to-execute

You cannot update a not-fenced Java stored procedure without stopping
and restarting the database manager.

Note
Chapter 7. Tuning application performance 243

application package before executing the program. Because all logic to
execute SQL statements is determined before executing the program, static
SQL programs have the least run-time overhead of all the DB2 programming
methods, and execute faster.

To prepare all SQL statements in a static embedded SQL program, all
database objects being accessed must exist when binding the package. If
you want to bind the package when one or more database objects are
missing, specify the option SQLERROR CONTINUE in conjunction with VALIDATE RUN
in the BIND or PREP command. Though you encounter errors for SQL
statements which try to access missing database objects, the package will be
bound. For the SQL statements which had errors during the bind, the rebind
process will be performed at execution time. If you want to have the least
run-time overhead, make sure that all database objects being accessed exist
during the bind.

7.3.1.1 When and how the access plan is determined
The DB2 optimizer determines the best access plans for static SQL programs
when the bind operation is performed. The determination is done based on
the statistical information stored in the system catalog. Obsolete statistical
information may lead the DB2 optimizer to select inefficient access plans and
may cause performance problems. Therefore, it is very important to collect
up-to-date statistical information using the RUNSTATS utility before binding
packages.

Since static SQL statements are processed based on the access plans
determined during the bind, there might be better access plans if you make
numerous changes to the database after the bind. For example, assuming
you have a very small table with an index and your application has static SQL
statements retrieving data from the index keys, then the application tends to
access the table using table scans rather than index scans because the size
is too small to benefit from index scans; however, if the table considerably
grows up, index scans are preferable. In such a case, you should consider
executing RUNSTATS to refresh the table and index’s statistical information
stored in the system catalog, and execute the REBIND command to take new
access plans for the static SQL statements.

There are various forms of RUNSTATS, but a good default to use is:

RUNSTATS ON TABLE xxx AND DETAILED INDEXES ALL

Adding the WITH DISTRIBUTION clause can be a very effective way to improve
access plans where data is not uniformly distributed.
244 DB2 UDB V7.1 Performance Tuning Guide

Access path to volatile tables
If you have volatile tables whose size can vary from empty to quite large at
run time, relying on the statistics collected by RUNSTATS to generate an access
path to a volatile table can be misleading. For example, if the statistics were
collected when the volatile table was empty the optimizer tends to favor
accessing the volatile table using a table scan rather than an index scan. If
you know a table is volatile, you can let the DB2 optimizer to select index
scans regardless of the existing statistics of these tables by executing the
ALTER TABLE statement with the VOLATILE option.

ALTER TABLE tablename VOLATILE

When a table is known to be volatile to the optimizer, it will favor index scans
rather than table scans. This means that access paths to a volatile table will
not depend on the existing statistics on this table. These statistics will be
ignored by the optimizer because they can be misleading, in the sense that
they are static and do not reflect the current content of the table.

To deactivate the volatile option and let the DB2 optimizer choose access
paths based on the existing statistics, execute the following statement:

ALTER TABLE tablename NOT VOLATILE

7.3.2 Dynamic SQL
Dynamic SQL statements are ones that your application builds and executes
at run time. An interactive application that prompts the end user for key parts
of an SQL statement, such as the names of the tables and columns to be
searched, is a good example of dynamic SQL. The application builds the SQL
statement while it is running, and then submits the statement for processing.
Generally, dynamic SQL statements are well-suited for applications that run
against a rapidly changing database where transactions need to be specified
at run time.

7.3.2.1 When and how the access plan is determined
Dynamic embedded SQL requires the precompile, compile, and link phases
of application development. However, the binding or selection of the most
effective data access plan is performed at program execution time, as the
SQL statements are dynamically prepared.

An embedded dynamic SQL programming module will have its data access
method determined during the statement preparation and will utilize the
database statistics available at query execution time. Choosing an access
plan at program execution time has some advantages as well as a drawback.
Chapter 7. Tuning application performance 245

Some of the advantages are:

• Current database statistics are used for each SQL statement.

• Database objects do not have to exist before run time.

• This method is more flexible than using static SQL statements.

One drawback is that dynamic SQL statements can take more time to
execute, since queries are optimized at run time. To improve your dynamic
SQL program’s performance, the following are key:

• Execute RUNSTATS after making significant updates to tables or creating
indexes.

• Minimize preparation time for dynamic SQL statements.

Keeping statistics information up-to-date helps the DB2 optimizer to choose
the best access plan. You do not need to rebind packages for dynamic SQL
programs after executing RUNSTATS since access plan is determined at run
time.

In the following section, we will discuss how to minimize preparation time for
dynamic SQL statements.

7.3.2.2 Avoid repeated PREPARE statements
When an SQL statement is prepared, it is parsed, optimized, and made ready
to be executed. The cost of preparing can be very significant, especially
relative to the cost of executing very simple queries (it can take longer to
prepare such queries than to execute them). To improve the performance of
dynamic SQL, the global package cache was introduced in DB2 UDB Version
5.0. The generated access plan for an SQL statement is stored in the global
package cache, and it can be reused by the same or other applications. Thus,
if the same exact statement is prepared again, the cost will be minimal.
However, if there is any difference in syntax between the old and new
statements, the cached plan cannot be used.

For example, suppose the application issues a PREPARE statement for the
statement "SELECT * FROM EMPLOYEE WHERE empno = ‘000100' ", then issues
another PREPARE statement for "SELECT * FROM EMPLOYEE WHERE empno = ‘000200'

" (the same statement but with a different literal value). The cached plan for
the first statement cannot be reused for the second, and the latter's PREPARE

time will be non-trivial. See the following example:
246 DB2 UDB V7.1 Performance Tuning Guide

The solution is to replace the literal ‘000100' by a question mark (?), issue a
PREPARE, declare the cursor for the statement, assign the literal when opening
the cursor. By changing the program variable(s) appropriately before each
OPEN statement, you can reuse the prepared statement. See the following
example:

Parameter markers can and should be used, not just for SELECT, but also for
repeated executions of INSERT, UPDATE, or DELETE statements. For example, if
your application is using EXECUTE IMMEDIATE to execute multiple statements
that differ only in the literal values they contain, those EXECUTE IMMEDIATE

statements should be replaced by PREPARE and EXECUTE statements using
parameter markers. See the following example to read records from a file and
insert them into a table:

strcpy (st1,"SELECT * FROM EMPLOYEE WHERE empno=‘000100’");
strcpy (st2,"SELECT * FROM EMPLOYEE WHERE empno=‘000200’");
EXEC SQL PREPARE s1 FROM :st1;
EXEC SQL PREPARE s2 FROM :st2;
EXEC SQL DECLARE c1 CURSOR FOR s1;
EXEC SQL DECLARE c2 CURSOR FOR s2;
EXEC SQL OPEN c1;
EXEC SQL OPEN c2;
...

strcpy (st,"SELECT * FROM EMPLOYEE WHERE empno=’?’");
EXEC SQL PREPARE s1 FROM :st;
EXEC SQL DECLARE c1 CURSOR FOR s1;
EXEC SQL DECLARE c2 CURSOR FOR s1;
strcpy (parmvar1,"000100");
strcpy (parmvar2,"000100");
EXEC SQL OPEN c1 using :parmvar1;
...
EXEC SQL OPEN c2 using :parmvar2;
...

for (end of file) {
...
//Read a record from the input file;
//Generate INSERT statement to store the record
//into a table and save the statement into
//the host variable stmt;
...
EXEC SQL EXECUTE IMMEDIATE :stmt

}

Chapter 7. Tuning application performance 247

In this example, generated INSERT statements are prepared and executed for
each record being inserted. If the input file has many rows, preparing all
INSERT statements will be expensive. You should change this example as
follows:

This example can complete the insert job faster, since only one INSERT

statement is prepared and reused for all rows being inserted.

7.3.2.3 Tune optimization level
Sometimes another cause of long preparation times is the use of a query
optimization class that is higher than necessary. That is, the DB2 Optimizer
can spend more time finding the best access plan for a query than is justified
by a reduction in execution time.

For example if the database has large number of concurrent activity,
numerous simple SQL statements to process, and a requirement to perform
them in seconds, set the optimization class to a lower value such as 1 or 2 by
the SET CURRENT QUERY OPTIMIZATION statement. If you do not set any
optimization level in the CURRENT QUERY OPTIMIZATION special register, the DB2
optimizer will table the value set in the DFT_QUERYOPT database configuration
parameter.

7.4 Call Level Interface and ODBC

The DB2 Call Level Interface (CLI) is a programming interface that your C
and C++ applications can use to access DB2 databases. DB2 CLI is based
on the Microsoft Open Database Connectivity Standard (ODBC)
specification, and the X/Open and ISO Call Level Interface standards. Many
ODBC applications can be used with DB2 without any modifications.
Likewise, a CLI application is easily ported to other database servers.

strcpy(stmt,"INSERT INTO tablea VALUES (?,?,?)");
EXEC SQL PREPARE st FROM :stmt;
for (end of file) {

...
//Read a record from the input file;
//Assign read values into the host
//variables (var1,var2,var3) for the parameter markers;

EXEC SQL EXECUTE st USING :var1,:var2,:var3;
}

248 DB2 UDB V7.1 Performance Tuning Guide

DB2 CLI and ODBC provide a dynamic SQL application development
environment. The SQL statements are issued through direct API calls. The
DB2 optimizer prepares the SQL statements when the application runs.
Therefore, the same advantages as dynamic embedded SQL programs are
also true for DB2 CLI and ODBC programs. As we saw in the previous
section, the advantages are:

• Current database statistics are used for each SQL statement.

• Database objects do not have to exist before run time.

• More flexible than static SQL statements.

Moreover, DB2 CLI and ODBC applications have the following advantages:

• Can store and retrieve sets of data.

• Can use scrollable and updatable cursors.

• Easy porting to other database platforms.

A drawback to using DB2 CLI and ODBC is that the dynamic preparation of
SQL statements can result in slower query execution.

7.4.1 Improve performance of CLI/ODBC applications
Since the DB2 optimizer prepares the SQL statements in CLI/ODBC
programs at run time like dynamic SQL programs, the following are
considerations to improve performance:

• Execute RUNSTATS after making significant updates to tables or creating
indexes

• Minimize preparation time for SQL statements

As we have already discussed, since the DB2 optimizer tries to find the best
access plan for each SQL statement based on the current statistics
information saved in the system catalog, refreshing statistics information
using RUNSTATS will help the DB2 optimizer to determine the best access plan.

To minimize preparation time for SQL statements in CLI/ODBC programs, you
should consider avoiding repeated PREPARE statement, and use the
appropriate optimization level as discussed in the dynamic embedded SQL
program section (see 7.3.2, “Dynamic SQL” on page 245). In the following
sections, we will discuss how to avoid repeated PREPARE statement, and set
optimization level in CLI/ODBC programs. We will also introduce two methods
to minimize preparation time for CLI/ODBC applications.
Chapter 7. Tuning application performance 249

7.4.1.1 Avoid repeated PREPARE statements
When you need to execute multiple statements that differ only in the literal
values they contain, you can use SQLExecDirect repeatedly for each
statements; however, this approach is expensive since each statement is
prepared one by one. To avoid preparing similar SQL statements repeatedly,
you can use an SQLPrepare call instead of multiple SQLExecDirect. Your
program should perform the following steps:

1. Call an SQLPrepare to prepare the SQL statement with parameter markers.

2. Issue an SQLBindParameter to bind a program variable to each parameter
marker.

3. Issue an SQLExecute call to process the first SQL statement.

4. Repeat SQLBindParameter and SQLExecute as many times as required.

The ready-to-execute package prepared by SQLPrepare will be reused for each
SQL statement.

7.4.1.2 Tune optimization level
As discussed in the dynamic embedded SQL section, if the database is in an
environment such as Online Transaction Processing (OLTP), which typically
has numerous simple SQL statements to process, set the optimization class
to a lower value such as 1 or 2. To set the optimization level within the
application, use SQLExecDirect to issue a SET CURRENT QUERY OPTIMIZATION

statement. To set the same optimization level for all the CLI/ODBC
applications on a client, use the UPDATE CLI CFG command from the client as in
the following example:

UPDATE CLI CFG FOR SECTION database1 USING DB2OPTIMIZATION 2

This command sets the CLI/ODBC keyword DB2OPTIMIZATION=2 in the
db2cli.ini file so that the DB2 optimizer will use the optimization level 2 to
optimize SQL statements of all the CLI/ODBC applications accessing the
database database1 from this client.

7.4.1.3 Use an optimized copy of catalog
Many applications written using ODBC or DB2 CLI make heavy use of the
system catalog. Since the tables that make up the DB2 catalog contain many
columns that are not required by the ODBC driver, ODBC/CLI applications
can cause DB2 to retrieve a lot of extraneous data when reading DB2 catalog
data pages. Also, the ODBC driver often has to join results from multiple DB2
catalog tables to produce the output required by the ODBC driver’s callable
interfaces.
250 DB2 UDB V7.1 Performance Tuning Guide

While this does not usually present a problem for databases with a small
number of database objects (tables, views, synonyms and so on), it can lead
to performance problems when using these applications with larger DB2
databases.

This performance degradation can be attributed to 2 main factors: the amount
of information that has to be returned to the calling application and the length
of time that locks are held on the catalog tables.

The db2ocat tool solves both problems by creating separate system catalog
tables called the ODBC optimized catalog tables that has only the columns
necessary to support ODBC/CLI operations.

The db2ocat tool is a 32-bit Windows program that can be used on Windows
workstations running the DB2 Version 6.1 (or later) client. You can create
ODBC optimized catalog tables in DB2 databases on any platform from this
tool running on Windows workstations.

Using the db2ocat tool, you can identify a subset of tables and stored
procedures that are needed for a particular application and create a ODBC
optimize catalog that is used to access data about those tables. Figure 43
shows the db2ocat tool GUI which is used to select tables that will be
accessible through the ODBC optimized catalog:
Chapter 7. Tuning application performance 251

Figure 43. The db2ocat tool

An ODBC optimized catalog consists of ten tables with the specified schema
name. If you specify OCAT as the schema name during the creation of the
ODBC optimized catalog, the following tables will be created:

• OCAT.TABLES
• OCAT.COLUMNS
• OCAT.SPECIALCOLUMNS
• OCAT.TSTATISTICS
• OCAT.PRIMARYKEYS
• OCAT.FOREIGNKEYS
• OCAT.TABLEPRIVILEGES
• OCAT.COLUMNTABLES
• OCAT.PROCEDURES
• OCAT.PROCEDURESCOLUMNS

These tables contain only the rows representing database objects you
selected and the columns required for ODBC/CLI operations. Moreover, the
tables are pre-formatted for the maximum ODBC performance. By using the
252 DB2 UDB V7.1 Performance Tuning Guide

ODBC optimized catalog, the ODBC driver does not need to acquire locks on
the real system catalog tables or perform join operations for results from
multiple tables. Therefore, catalog query times and amount of data returned
as a result of these queries are substantially reduced.

You can have multiple ODBC optimized catalogs for different clients. The
ODBC optimized catalog is pointed to by the CLISCHEMA keyword. If the
schema name of the ODBC optimized catalog is OCAT, then set CLISCHEMA=OCAT
in db2cli.ini file on the client. You can directly edit the db2cli.ini file or
execute the following command:

UPDATE CLI CFG FOR SECTION database1 USING CLISCHEMA OCAT

The contents in the ODBC optimized catalog is not replicated automatically
from the system catalog. You must refresh the ODBC optimized catalog using
the db2ocat tool when you perform something which changes the system
catalog such as executing RUNSTATS or adding new columns (Figure 44).

Figure 44. The db2ocat tool (refresh ODBC optimized catalog
Chapter 7. Tuning application performance 253

The db2ocat tool is available at the following site:

ftp://ftp.software.ibm.com/ps/products/db2/tools/ in the file db2ocat.exe.

The readme file is available in the db2ocat.zip file at the same site.

7.4.1.4 Convert ODBC/CLI into static SQL
As ODBC/CLI applications are dynamic SQL applications, the most effective
data access plan of each query is generated at program execution time. This
process is expensive since the system catalog tables must be accessed for
the resolution for the SQL statements and the statements are optimized. By
using the db2ocat tool (see 7.4.1.3, “Use an optimized copy of catalog” on
page 250), the cost to access the system catalog can be reduced; however,
ODBC/CLI applications and dynamic SQL applications can be still slower
than static SQL applications whose SQL statements are ready-to-execute.

In this section, we introduce the method to convert ODBC/CLI applications
into static SQL applications. The information of an executed ODBC/CLI
application can be captured, and the executable form of statements are
stored in the database as a package. Other ODBC/CLI applications can use it
like static SQL applications without the preparation cost of the SQL
statements.

ODBC/CLI applications run in the following three different modes:

• Normal mode

This is the default value and the traditional ODBC/CLI usage.

• Capture mode

This is the mode used by the database administrator who will run an
ODBC/CLI application to capture its connection and statement attributes,
SQL statements, and input as well as output SQLDAs. When a connection
is terminated, the captured information is saved into an ASCII text file
specified by STATICCAPFILE keyword in the db2cli.ini file. This file should
be distributed to other clients as well as the application, and also the
package should be created using the db2cap bind command, just as you
would create a package using the bind command for a static SQL
application.

You need to use DB2 UDB Version 7.1 or later to convert ODBC/CLI
applications to static SQL applications.

Note
254 DB2 UDB V7.1 Performance Tuning Guide

• Match mode

This is the mode used by the end user to run ODBC/CLI applications that
were pre-bound and distributed by the database administrator. When a
connection is established, the captured information associated with the
data source name will be retrieved from the local capture file specified by
STATICCAPFILE keyword in the db2cli.ini file. If a matching SQL statement
is found in the capture file, the corresponding static SQL statement will be
executed. Otherwise, the SQL statement will still be executed as a
dynamic SQL statement.

These modes are specified using the STATICMODE keyword of the db2cli.ini file
as in the following example:

This example specifies the capture mode. Captured information of the
ODBC/CLI application accessed SAMPLE database is saved into the
/home/db2inst1/pkg1.txt file. The STATICPACKAGE keyword is used to specify
the package name to be later bound by the db2cap bind command.

You can directly edit the db2cli.ini file as shown above, or use the UPDATE CLI

CFG command as the following example (the captured text file is shown in
Figure 45).

[SAMPLE]
STATICCAPFILE=/home/db2inst1/pkg1.txt
STATICPACKAGE=DB2INST1.ODBCPKG
STATICMODE=CAPTURE
DBALIAS=SAMPLE

UPDATE CLI CFG FOR SECTION sample
USING STATICCAPFILE /home/db2inst1/pkg1.txt

STATICMODE CAPTURE
STATICPACKAGE DB2INST1.ODBCPKG
Chapter 7. Tuning application performance 255

Figure 45. Captured file

If necessary, you can edit the captured file to change the bind options such as
QUALIFIER, OWNER, and FUNCPATH.

Then the db2cap bind command should be executed to create a package. The
captured file and the database name must be specified as the following
example:

db2cap bind /home/db2inst1 -d sample

The created package name have the suffix number depending on its isolation
level. The suffix for the package is one of the following:

• 0 = Uncommitted Read

[COMMON]
CREATOR=
CLIVERSION=07.01.0000
CONTOKENUR=
CONTOKENCS=
CONTOKENRS=
CONTOKENRR=
CONTOKENNC=

[BINDOPTIONS]
COLLECTION=DB2INST1
PACKAGE=ODBCPKG
DEGREE=
FUNCPATH=
GENERIC=
OWNER=DB2INST1
QUALIFIER=DB2INST1
QUERYOPT=
TEXT=

[STATEMENT1]
SECTNO=
ISOLATION=CS
STMTTEXT=select DEPTNO,DEPTNAME,MGRNO,ADMRDEPT,LOCATION from DEPARTMENT
STMTTYPE=SELECT_CURSOR_WITHHOLD
CURSOR=SQLCURCAPCS1
OUTVAR1=CHAR,3,,FALSE,FALSE,DEPTNO
OUTVAR2=VARCHAR,29,,FALSE,FALSE,DEPTNAME
OUTVAR3=CHAR,6,,FALSE,TRUE,MGRNO
OUTVAR4=CHAR,3,,FALSE,FALSE,ADMRDEPT
OUTVAR5=CHAR,16,,FALSE,TRUE,LOCATION

Although this captured file has only one SQL statement, you can have
more statements in a captured file.

Note
256 DB2 UDB V7.1 Performance Tuning Guide

• 1 = Cursor Stability

• 2 = Read Stability

• 3 = Repeatable Read

In our example, only one package DB2INST1.ODBCPKG1will be created, since our
example shown in Figure 45 has only one SQL statement using the isolation
level Cursor Stability. If the captured file has more than one statement and
their isolation levels are different, multiple packages will be created with
different suffixes.

You can have more than one captured file to create multiple packages in the
same database by executing the db2cap bind command for each captured file.
Be sure that the PACKAGE keyword of each captured file has a different value,
since it is used to determine the package name.

Lastly, you should distribute both the captured file and the application to all
client machines on which you intend to utilize the pre-bound package. On
each client, the STATICMODE keyword of the db2cli.ini file should be set as
MATCH, and the captured file should be specified using the STATICCAPFILE

keyword.

7.5 Java interfaces (JDBC and SQLJ)

DB2 provides support for many different types of Java programs, including
applets, applications, servlets, and advanced DB2 server-side features. Java
programs that access and manipulate DB2 databases can use the Java
Database Connectivity (JDBC) API, and the Embedded SQL for Java (SQLJ)
standard. Both of these are vendor-neutral SQL interfaces that provide data
access to your application through standardized Java methods.

The greatest benefit of using Java, regardless of the database interface, is its
write once, run anywhere capability, allowing the same Java program to be
distributed and executed on various operating platforms in a heterogeneous
environment. And since the two Java database interfaces supported by DB2
are industry open standards, you have the added benefit of using your Java
program against a variety of database vendors.

[SAMPLE]
STATICCAPFILE=/home/db2inst1/pkg1.txt
STATICMODE=MATCH
DBALIAS=SAMPLE
Chapter 7. Tuning application performance 257

For JDBC programs, your Java code passes dynamic SQL to a JDBC driver
that comes with DB2. Then, DB2 executes the SQL statements through JDBC
APIs which use DB2 CLI, and the results are passed back to your Java code.
JDBC is similar to DB2 CLI in that you do not have to precompile or bind a
JDBC program, since JDBC uses dynamic SQL.

JDBC relies on DB2 CLI; thus the performance considerations which we
discussed in the previous section are also applicable to JDBC applications.
See 7.4.1, “Improve performance of CLI/ODBC applications” on page 249.

With DB2 SQLJ support, you can build and run SQLJ programs that contain
static embedded SQL statements. Since your SQLJ program contains static
SQL, you need to perform steps similar to precompiling and binding. Before
you compile an SQLJ source file, you must translate it with the SQLJ
translator to create native Java source code. After translation, you can create
the DB2 packages using the DB2 for Java profile customizer (db2profc).
Mechanisms contained within SQLJ rely on JDBC for many tasks, like
establishing connections.

Since SQLJ contains static SQL statements and their access plans are
determined before being executed, the same considerations as static
embedded SQL programs are applicable to SQLJ applications. See 7.3.1,
“Static SQL” on page 243.

7.6 Concurrency

When many users access the same database, you must establish some rules
for the reading, inserting, deleting, and updating of data records. The rules for
data access are set by each application connected to a DB2 database and
are established using locking mechanisms. Those rules are crucial to
guarantee the integrity of the data, but they may decrease concurrency on
database objects. On a system with much unnecessary locking, your
application may take a very long time to process queries due to lock-waiting,
even if the system is rich in hardware resources and well tuned. In this
section we will discuss how you can control concurrency appropriately and
minimize lock-waits to improve your application’s performance.

To minimize lock-waits, what you should consider first is eliminating
unnecessary locks, by doing the following:

• Issue COMMIT statements at the right frequency.

• Specify the FOR FETCH ONLY clause in the SELECT statement.

• Perform INSERT, UPDATE, and DELETE at the end of a unit of work if possible.
258 DB2 UDB V7.1 Performance Tuning Guide

• Choose the appropriate isolation level.

• Eliminate next key locks by setting DB2_RR_TO_RS=YES if acceptable.

• Release read locks using the WITH RELEASE option of the CLOSE CURSOR
statement if acceptable.

• Avoid lock escalations impacting concurrency by tuning the LOCKLIST and
MAXLOCKS database configuration parameters.

Each of these guidelines is further explored in the following sections.

7.6.1 Issue COMMIT statements
Executing COMMIT statements takes overhead due to disk I/O such as flushing
logged data into disks; however, since all locks held in a unit of work are
released at the end of the unit of work, putting COMMIT statements frequently in
your application program improves concurrency. When your application is
logically at a point of consistency; that is, when the data you have changed is
consistent, put in a COMMIT statement.

Be aware that you should commit a transaction even though the application
only reads rows. This is because shared locks are acquired in read-only
applications (except for the uncommitted read isolation level, which will be
discussed in the next section) and held until the application issues a COMMIT or
closes the cursor using the WITH RELEASE option (it will be discussed later in
this chapter).

7.6.2 Specify FOR FETCH ONLY clause
A query with FOR FETCH ONLY clause never holds exclusive locks on the rows,
thus you can improve concurrency using this clause. See 7.1.6, “Specify the
FOR FETCH ONLY clause” on page 237.

7.6.3 INSERT, UPDATE, and DELETE at end of UOW
When an application issues an INSERT, UPDATE, or DELETE statement, the
application acquires exclusive locks on the affected rows and will keep them

If you opened cursors declared using the WITH HOLD option, locks protecting
the current cursor position of them will not be released when a COMMIT is
performed. See the pages describing DECLARE CURSOR in the DB2 UDB SQL
Reference, SC09-2974 for the WITH HOLD option in detail.

Note
Chapter 7. Tuning application performance 259

until the end of the unit of work. Therefore, perform INSERT, UPDATE, and DELETE

at the end of a unit of work if possible. This provides the maximum
concurrency.

7.6.4 Isolation levels
DB2 Universal Database provides different levels of protection to isolate the
data from each of the database applications while it is being accessed.

These levels of protection are known as isolation levels, or locking strategies.
Choosing an appropriate isolation level ensures data integrity and also avoids
unnecessary locking. The isolation levels supported by DB2 are listed below,
ordered in terms of concurrency, starting with the maximum:

• Uncommitted Read

• Cursor Stability

• Read Stability

• Repeatable Read

7.6.4.1 Uncommitted Read
The Uncommitted Read (UR) isolation level, also known as dirty read, is the
lowest level of isolation supported by DB2. It can be used to access
uncommitted data changes of other applications. For example, an application
using the Uncommitted Read isolation level will return all of the matching
rows for the query, even if that data is in the process of being modified and
may not be committed to the database. You need to be aware that two
identical queries may get different results even if they are issued within a unit
of work, since other concurrent applications can change or modify those rows
that the first query retrieves.

Uncommitted Read transactions will hold very few locks. Thus they are not
likely to wait for other transaction to release locks. If you are accessing
read-only tables or it is acceptable for the application to retrieve uncommitted
data updated by another application, use this isolation level, because it is
most preferable in terms of performance.

Dynamic SQL applications using this isolation level will acquire locks on
the system catalog tables.

Note
260 DB2 UDB V7.1 Performance Tuning Guide

7.6.4.2 Cursor Stability
The Cursor Stability (CS) isolation level locks any row on which the cursor is
positioned during a unit of work. The lock on the row is held until the next row
is fetched or the unit of work is terminated. If a row has been updated, the
lock is held until the unit of work is terminated. A unit of work is terminated
when either a COMMIT or ROLLBACK statement is executed.

An application using Cursor Stability cannot read uncommitted data. In
addition, the application locks the row that has been currently fetched, and no
other application can modify the contents of the current row. As the
application locks only the row on which the cursor is positioned, two identical
queries may still get different results even if they are issued within a unit of
work.

When you want the maximum concurrency while seeing only committed data
from concurrent applications, this isolation level should be chosen.

7.6.4.3 Read Stability
The Read Stability (RS) isolation level locks those rows that are part of a
result set. If you have a table containing 10,000 rows and the query returns
10 rows, then only 10 rows are locked until the end of the unit of work.

An application using Read Stability cannot read uncommitted data. Instead of
locking a single row, it locks all rows that are part of the result set. No other
application can change or modify these rows. This means that if you issue a
query twice within a unit of work, the second run can retrieve the same
answer set as the first. However, you may get additional rows, as another
concurrent application can insert rows that match to the query.

7.6.4.4 Repeatable Read
The Repeatable Read (RR) isolation level is the highest isolation level
available in DB2. It locks all rows that an application references within a unit
of work, no matter how large the result set. In some cases, the optimizer
decides during plan generation that it may get a table level lock instead of
locking individual rows, since an application using Repeatable Read may
acquire and hold a considerable number of locks. The values of the LOCKLIST

Remember that selected rows are locked until the end of the unit of work.
Therefore, do not forget to issue a COMMIT (or ROLLBACK) statement even if
your application is read-only. A COMMIT (or ROLLBACK) statement will terminate
the unit of work and release held locks.

Note
Chapter 7. Tuning application performance 261

and MAXLOCKS database configuration parameters (see 7.6.7.1, “Configure
LOCKLIST and MAXLOCKS parameter” on page 266) will affect this decision.

An application using Repeatable Read cannot read uncommitted data of a
concurrent application. As the name implies, this isolation level ensures the
repeatable read to applications, meaning that a repeated query will get the
same record set as long as it is executed in the same unit of work. Since an
application using this isolation level holds more locks on rows of a table, or
even locks the entire table, the application may decrease concurrency. You
should use this isolation level only when changes to your result set within a
unit of work are unacceptable.

7.6.4.5 Choosing an isolation level
When you choose the isolation level for your application, decide which
concurrency problems are unacceptable for your application and then choose
the isolation level which prevents these problems. Remember that the more
protection you have, the less concurrency is available.

• Use the Uncommitted Read isolation level only if you use queries on
read-only tables, or if you are using only SELECT statements and getting
uncommitted data from concurrent applications is acceptable. This
isolation level provides the maximum concurrency.

• Use the Cursor Stability isolation level when you want the maximum
concurrency while seeing only committed data from concurrent
applications.

• Use the Read Stability isolation level when your application operates in a
concurrent environment. This means that qualified rows have to remain
stable for the duration of the unit of work.

• Use the Repeatable Read isolation level if changes to your result set are
unacceptable. This isolation level provides minimum concurrency.

7.6.4.6 Setting an isolation level
The isolation level is defined for embedded SQL statements during the
binding of a package to a database using the ISOLATION option of the PREP or
the BIND command. The following PREP and BIND examples specify the isolation
level as the Uncommitted Read (UR).

PREP program1.sqc ISOLATION UR
BIND program1.bnd ISOLATION UR

If no isolation level is specified, the default level of Cursor Stability is used.

If you are using the command line processor, you may change the isolation
level of the current session using the CHANGE ISOLATION command.
262 DB2 UDB V7.1 Performance Tuning Guide

CHANGE ISOLATION TO rr

For DB2 Call Level Interface (DB2 CLI), you can use the SQLSetConnectAttr

function with the SQL_ATTR_TXN_ISOLATION attribute at run time. This will set the
transaction isolation level for the current connection referenced by the
ConnectionHandle. The accepted values are:

• SQL_TXN_READ_UNCOMMITTED : Uncommitted Read

• SQL_TXN_READ_COMMITTED : Cursor Stability

• SQL_TXN_REPEATABLE_READ : Read Stability

• SQL_TXN_SERIALIZABLE : Repeatable Read

You can also set the isolation level using the TXNISOLATION keyword of the DB2
CLI configuration as follows:

UPDATE CLI CFG FOR SECTION sample USING TXNISOLATION 1

The following values can be specified for the TXNISOLATION keyword: 1, 2, 4, 8,
or 32. Here are their meanings:

• 1 = Uncommitted Read

• 2 = Cursor Stability (default)

• 4 = Read Stability

• 8 = Repeatable Read

You can use the DB2 CLI configuration for JDBC applications as well. If you
want to specify the isolation level within the JDBC application program, use
the setTransactionIsolation method of java.sql.Connection. The accepted
values are:

• TRANSACTION_READ_UNCOMMITTED : Uncommitted Read

• TRANSACTION_READ_COMMITTED : Cursor Stability

• TRANSACTION_REPEATABLE_READ : Read Stability

• TRANSACTION_SERIALIZABLE : Repeatable Read

7.6.5 Eliminate next key locks
Next key locking is a mechanism to support the Repeatable Read isolation
level. If an application modifies a table using such operations as INSERT,
DELETE, or UPDATE, the database manager will obtain key locks on the next
higher key value than the modified key so that other applications using
Repeatable Read can get the same result sets as long as they executes
queries in the same unit of work.
Chapter 7. Tuning application performance 263

However, if you do not have any applications using Repeatable Read, there is
no point in using the next key locking mechanism, and next key locks may
cause lock-contention. In this case, you should set DB2_RR_TO_RS=YES and
eliminate next locking as follows:

db2set DB2_RR_TO_RS=YES

You may significantly improve concurrency on your database objects by
setting this registry variable.

This setting affects the instance level, and you need to stop and start the
database manager after changing the value.

7.6.6 Close cursor with release
You should use the Read Stability isolation level when qualified rows have to
remain stable for the duration of the unit of work. If changes to your result set
are unacceptable, you should use the Repeatable Read isolation level. When
using Read Stability or Repeatable Read, more locks are hold than using
Cursor Stability or Uncommitted Read.

If you look at your application using Read Stability or Repeatable Read, you
may find that all queries in the application do not need the protection which
Read Stability or Repeatable Read provides, that means, there may be
queries which can release locks before the end of the unit of work. For such
queries, use a CLOSE CURSOR statement that includes the WITH RELEASE clause
when closing the cursor.

CLOSE c1 WITH RELEASE

If the WITH RELEASE clause is specified, all read locks (if any) that have been
held for the cursor will be released. If it is not specified, held locks will not be
released until the unit of work ends.

The WITH RELEASE clause has no effect for cursors that are operating under the
CS or UR isolation levels. When specified for cursors operating under RS or
RR isolation levels, the WITH RELEASE clause ends some of the guarantees of
those isolation levels, because all read locks will be released before the end
of the unit of work. An RS and an RR cursor may experience the
nonrepeatable read phenomenon, which means that if you open a cursor,
fetch rows, close the cursor with WITH RELEASE clause, reopen the cursor, and
fetch rows again, then the second query can retrieve the different answer set
as the first because other applications can update the rows that match to the
query. An RR cursor may experience the phantom read phenomenon as well.
After closing the cursor with the WITH RELEASE clause, the second query can
264 DB2 UDB V7.1 Performance Tuning Guide

retrieve the additional rows which were not returned by the first query,
because other applications can insert rows that match to the query.

If a cursor that is originally RR or RS is reopened after being closed using the
WITH RELEASE clause, then new read locks will be acquired.

7.6.7 Lock escalation
If your application acquires and holds locks on almost of all rows in one table,
it may be better to have one lock on the entire table. Each database allocates
a memory area called a lock list, which contains all locks held by all
applications concurrently connected to the database.

Each lock requires 72 bytes of memory for an object that has no other locks
held on it, or 36 bytes of memory for an object that has existing locks held on
it. If a number of row locks can be replaced with a single table lock, the
locking storage area can be used by other applications.

When DB2 converts the row locks to a table lock on your behalf, this is called
lock escalation. DB2 will perform lock escalation to avoid resource problems
by too many resources being held for the individual locks.

Two database configuration parameters have a direct effect on lock
escalation. They are:

• LOCKLIST — defines the amount of memory allocated for the locks.

• MAXLOCKS — defines the percentage of the total lock list permitted to be
allocated to a single application.

There are two different situations for lock escalation:

• One application exceeds the percentage of the lock list as defined by the
MAXLOCKS configuration parameter. The database manager will attempt to
free memory by obtaining a table lock and releasing row locks for this
application.

• Many applications connected to the database fill the lock list by acquiring
a large number of locks. DB2 will attempt to free memory by obtaining a
table lock and releasing row locks.

Also note that the isolation level used by the application has an effect on lock
escalation:

• Cursor Stability will acquire row level locks initially. If required, table level
locks can be obtained in such a case as updating many rows in a table.
Usually, a very small number of locks are acquired by each cursor stability
Chapter 7. Tuning application performance 265

application, since they only have to guarantee the integrity of the data in
the current row.

• Read Stability locks all rows in the original result set.

• Repeatable Read may or may not obtain row locks on all rows read to
determine the result set. If it does not, then a table lock will be obtained
instead.

If a lock escalation is performed, from row to table, the escalation process
itself does not take much time; however, locking entire tables decreases
concurrency, and overall database performance may decrease for
subsequent accesses against the affected tables.

Once the lock list is full, performance can degrade, since lock escalation will
generate more table locks and fewer row locks, thus reducing concurrency on
shared objects in the database. Your application will receive an SQLCODE of
-912 when the maximum number of lock requests has been reached for the
database.

7.6.7.1 Configure LOCKLIST and MAXLOCKS parameter
To avoid decreasing concurrency due to lock escalations or errors due to a
lock list full condition, you should set appropriate values for both the LOCKLIST

and MAXLOCKS database configuration parameters. The default values of these
parameters may not be big enough (LOCKLIST: 10 pages, MAXLOCKS: 10%) and
cause excessive lock escalations.

To determine the lock list size, estimate the following numbers:

• Average number of locks per application

• Maximum number of active applications

If you have no idea of the average number of locks per application, execute
an application and monitor the number of held locks at the application level
using the Snapshot Monitor. To get the number of locks held by a particular
application, execute the Snapshot Monitor as in the following example:

GET SNAPSHOT FOR LOCKS FOR APPLICATION AGENTID 15

In this example, 15 is the application handle number, which you can obtain
using the LIST APPLICATIONS command.

See Chapter 5, “Monitoring tools and utilities” on page 119 for detailed
information about the database system monitor including the Snapshot
Monitor and Event Monitor.
266 DB2 UDB V7.1 Performance Tuning Guide

For the maximum number of active applications, you can use the value of
MAXAPPLS database configuration parameter.

Then perform the following steps to determine the size of your lock list:

• Calculate a lower and an upper bound for the size of your lock list using
the following formula:

(Average number of locks per application * 36 * maxappls) / 4096
(Average number of locks per application * 72 * maxappls) / 4096

In the formula above, 36 is the number of bytes required for each lock
against an object that has an existing lock, and 72 is the number of bytes
required for the first lock against an object.

• Estimate the amount of concurrency you will have against your data, and
based on your expectations, choose an initial value for the LOCKLIST

parameter that falls between the upper and lower bounds that you have
calculated.

You may want to increase LOCKLIST if MAXAPPLS is increased, or if the
applications being run perform infrequent commits.

When setting MAXLOCKS, you should consider the size of the lock list (LOCKLIST)
and how many locks you will allow an application to hold before a lock
escalation occurs. If you will allow any application to hold twice the average
number of locks, the value of the MAXLOCKS would be calculated as following:

100 * (average number of locks per application * 2 * 72 bytes per locks)
/ (lock list * 4096 bytes)

You can increase MAXLOCKS if few applications run concurrently, since there will
not be a lot of contention for the lock list space in this situation.

Once you have set the LOCKLIST and MAXLOCKS database configuration
parameters, you can use the Snapshot Monitor and Event Monitor to validate
or adjust the value of the values of these parameters. Here are the monitor
elements which you should be interested in:

• Maximum number of locks held by a given transaction

• Total lock list memory in use

• Number of lock escalations that have occurred

You can check the maximum number of locks held by a given transaction
using the Event Monitor. You need to create an event monitor to get
transaction events to get this information. This information can help you to
determine if your application is approaching the maximum number of locks
Chapter 7. Tuning application performance 267

available to it, as defined by the LOCKLIST and MAXLOCKS database configuration
parameters. In order to perform this validation, you will have to sample
several applications. Note that the monitor information is provided at a
transaction level, not an application level.

To check the total lock list memory in use, you should use the Snapshot
Monitor at the database level. If you notice that the monitored value is getting
closer to the lock list size, consider increasing the value of the LOCKLIST

parameter. Note that the LOCKLIST configuration parameter is allocated in
pages of 4K bytes each, while this monitored value is in bytes.

To check the number of lock escalations that have occurred, you can use the
Snapshot Monitor at database level. If you observe many lock escalations,
you should increase the value of the LOCKLIST and/or the MAXLOCKS parameters.

See Chapter 5, “Monitoring tools and utilities” on page 119 for detailed
information about the Event Monitor and Snapshot Monitor.

7.6.8 Lock wait behavior
What happens if one application requests to update a row that is already
locked with an exclusive (X) lock? The application requesting the update will
simply wait until the exclusive lock is released by the other application.

To ensure that the waiting application can continue without needed to wait
indefinitely, the LOCKTIMEOUT database configuration parameter can be set to
define the length of the time-out period. The value is specified in seconds. By
default, the lock time-out is disabled (set to a value of -1). This means the
waiting application will not receive a time-out and wait indefinitely.

7.6.8.1 Statement level rollback
If a transaction waits for a lock longer than the time the LOCKTIMEOUTparameter
specifies, the entire transaction will be rolled back by default. You can make
this roll back due to time-out at statement level by setting the DB2 registry
variable DB2LOCK_TO_RB=STATEMENT by the following command:

db2set DB2LOCK_TO_RB=STATEMENT

This command should be executed by the instance owner, and you need to
stop/start the database manager to make this change effective. If you set
DB2LOCK_TO_RB=STATEMENT, lock time-outs cause only the current statement to
be rolled back.
268 DB2 UDB V7.1 Performance Tuning Guide

7.6.8.2 Deadlock behavior
In DB2, contention for locks by processes using the database can result in a
deadlock situation.

A deadlock may occur in the following manner:

• A locks record 1.

• B locks record 5.

• A attempts to lock record 5, but waits since B already holds a lock on this
record.

• B then tries to lock record 1, but waits since A already holds a lock on this
record.

In this situation, both A and B will wait indefinitely for each other’s locks, until
an external event causes one or both of them to roll back.

DB2 uses a background process, called the deadlock detector, to check for
deadlocks. The process is activated periodically as determined by the
DLCHKTIME parameter in the database configuration file. When activated, it
checks the lock system for deadlocks.

When the deadlock detector finds a deadlock situation, one of the deadlocked
applications will receive an error code and the current unit of work for that
application will be rolled back automatically by DB2. When the rollback is
complete, the locks held by this chosen application are released, thereby
allowing other applications to continue.

To monitor deadlocks, you can use the Snapshot Monitor at the database
level as well as the application level.

Since eliminating unnecessary locks minimizes the possibility of deadlocks,
tips we have discussed this section are also applicable to avoid deadlocks,
therefore:

• Issue COMMIT statements at the right frequency.

• Specify the FOR FETCH ONLY clause in the SELECT statement.

• Specify the FOR UPDATE clause in the SELECT statement.

• Choose the appropriate isolation level.

• Eliminate next key locks by setting DB2_RR_TO_RS=YES if acceptable.

• Release read locks using the WITH RELEASE option of the CLOSE CURSOR

statement if acceptable.
Chapter 7. Tuning application performance 269

• Avoid lock escalations impacting concurrency by tuning LOCKLIST and
MAXLOCKS parameter.
270 DB2 UDB V7.1 Performance Tuning Guide

Chapter 8. Tuning database utilities

Data and information are the lifeblood of every organization. With the
increasing presence of the Internet, e-business solutions, business
automation, and data warehousing demands, continuous data availability is
now a requirement. When business processes are affected by an outage, it is
very critical to be able to define both a recovery point and recovery time
objectives to specify how fast we need to recover data and how recent the
data will be. Whenever an outage occurs, we must recover quickly to a point
at which usable data is available.

Speedy recovery depends on regular backups and fail-safe procedures for
converting backup data to production data. Although it seems strange to
consider backup/restore procedures and performance at the same time, as
very large databases are becoming more prevalent, the performance of a
backup/restore solution becomes a very critical variable in ensuring data
availability. In this section, we detail the various options that have some
quantitative measure of the improvement of BACKUP, EXPORT, LOAD,
IMPORT and RESTORE utilities.

8.1 BACKUP DATABASE utility

Backups should be done whenever there is a logical breakpoint in the
business cycle, for example, at the end of a business day. To make a backup
copy of the database, use the BACKUP DATABASE utility from the command line
processor, from the Control Center, or from application programs with the
administrative API, sqlubkp. This utility automatically establishes a connection
to the specified database. If a connection to the specified database already
exists, it will be used for the backup operation, and the connection will be
terminated at the completion of the backup. You need to consider the
following before running the BACKUP DATABASE utility:

• Start the database manager (DB2START) before running the BACKUP DATABASE

command or API. For the Control Center, explicit starting of the database
manager is not required.

• You must have SYSADM, SYSCTRL, or SYSMAINT authority to issue the
BACKUP DATABASE utility.

• While using the command, API, or task under the Control Center, specify
the database alias name, not the database name.

• Do not back up a database that is not in a usable state, except for a
database in the backup pending state.
© Copyright IBM Corp. 2000 271

• Re-execute the BACKUP DATABASE utility if a system crash occurs during a
critical stage of backup.

• Ensure that the concurrent backup processes do not target to the same
tape.

• Be aware that the BACKUP DATABASE utility provides a concurrency control for
multiple processes which are making backup copies of different
databases. This control feature keeps the backup target device open until
the entire backup process has ended.

In the art of performance tuning, the objective is usually to keep the output
device busy (for example, tape). As long as the buffers are being filled as
quickly as they can be written to the device, then we have done well.

For additional information, please see Recovering a Database in the
Administration Guide: Implementation, SC09-2944.

8.1.1 Command options
Although we have many command line options for BACKUP DATABASE, here we
will consider just a few of the command options that can provide a
considerable amount of performance improvement while using the backup
utility.

8.1.1.1 TO dir/dev
The target directory and devices must reside on the database server. This
parameter is repeated to specify the target directories and devices that the
backup image will span across. If more than one target is specified (for
example bkup_dir1, bkup_dir2, and bkup_dir3), then bkup_dir1 is opened first,
and the media header and special files are placed along with the
configuration file, table space table, and history file. All the remaining targets
are opened, and are then used in parallel during backup, thereby increasing
the performance and reducing the time for overall backup operation.

In order to take a backup quickly for large databases, when you have only a
few tape devices, it is preferable to back up the database on multiple target
directories on multiple disks or on different mounted volumes. Then this can
be moved to tape at the earliest convenient time.

BACKUP DATABASE sample TO /bkup_dir1,/bkup_dir2,/bkup_dir3
272 DB2 UDB V7.1 Performance Tuning Guide

8.1.1.2 BUFFER buffer-size
This value is used as the buffer allocation size in pages (4 KB) when building
the backup image. For a buffer size of zero, the value of the database
manager configuration parameter BACKBUFSZ will be used as the buffer
allocation size. When backing up a database, the data is first copied to an
internal buffer. Data is then written from this buffer to the backup media when
the buffer is full. Tuning BACKBUFSZ can help improve the performance of the
backup utility as well as minimizing the impact on the performance of other
concurrent database operations.

We recommend setting the buffer size to a multiple of the extent size. If
multiple table spaces have different extent sizes, the buffer size value should
be a multiple of the largest extent size. See 3.3.8.3, “Extent size” on page 65.

For a user on most versions of Linux, using DB2's default buffer sizes for
backup and restore to a SCSI tape device results in the error “SQL2025N,
reason code 75”. To prevent the overflow of Linux internal SCSI buffers, use
the following formula to determine the appropriate buffer size:

Bufferpages <= ST_MAX_BUFFERS * ST_BUFFER_BLOCKS / 4

Here, Bufferpages is the value of either BACKBUFSZ or RESTBUFSZ if you do not
explicitly specify the USING BUFFER parameter.

ST_MAX_BUFFERS and ST_BUFFER_BLOCKS are defined in the Linux kernel under the
drivers/scsi directory.

For additional information on the configurable database manager
configuration parameters please refer to the Administration Guide:
Performance, SC09-2945.

8.1.1.3 OPEN n SESSIONS and WITH n BUFFERS option
While using the OPEN n SESSIONS option along with TSM (formerly ADSM),
specifying OPEN x SESSIONS will establish x connections to the TSM servers.
This OPEN n SESSIONS command has no effect when backing up to tape, disk,
or other local devices. Each of the sessions will wait for data buffers to
become available. For this reason, we require at least x+1 backup buffers to
be allocated. The default for num-buffers is 2.

When creating a backup to multiple locations using multiple sessions of TSM
or multiple local devices, a larger number of buffers may be used to improve
performance.

BACKUP DATABASE sample USE TSM OPEN 2 SESSIONS WITH 4 BUFFERS
Chapter 8. Tuning database utilities 273

The number of buffers to allocate should be:

Number of Buffers = #sessions +#parallelism +2

and

(num-buffers * buffer-size) < UTIL_HEAP_SZ

If you use a variable block size with your tape devices, ensure that the DB2
buffer size is either less than or equal to the maximum variable block size for
which the device is configured. After choosing the configuration, make sure to
test both backup and restore with those settings. Otherwise, the backup will
succeed, but the resulting image may not be guaranteed to be recoverable.

8.1.1.4 PARALLELISM n
Using this parameter, we can dramatically reduce the time required to
complete the backup. This parameter defines the number (n) of processes
that are started to read data from the database. Each process is assigned to
backup a specific table space. When it completes backing up the table space,
it requests another. Each process will be assigned a table space to complete,
therefore, to get better performance, let this value be less than the number of
table spaces; since setting up the value higher than the number of table
spaces does not show any significant difference in performance. However,
each process requires both memory and CPU overhead; for a heavily loaded
system, you should leave this parameter at its default value of 1.

8.1.2 Configuration parameters
Along with the command options, we can also tune a few database manager
configuration parameters to gain considerable impact on performance. The
customer’s specific needs and environment will determine the tuning effort of
these parameters.

8.1.2.1 Utility heap size (util_heap_sz)
This is the maximum database shared memory that can be used
simultaneously by the BACKUP, RESTORE and LOAD utilities and during the load
recovery process. It is recommended to use the default values unless your
utilities run out of space; in that case, increase this value. You cannot run
these utilities concurrently when the value is set too low because of memory
constraints.

On BACKUP, parallelism must be less than number of table spaces.

Note
274 DB2 UDB V7.1 Performance Tuning Guide

During offline backup, you can increase the UTIL_HEAP_SZ and the backup
buffer size (using the BUFFER option or BACKBUFSZ parameter) and
subsequently reduce the buffer pool size (BUFFSIZE) and others which are not
relevant to backup, thereby obtaining the maximum backup performance.
Ensure that the original values are restored after the backup is over.

8.1.2.2 DB2_DISABLE_FLUSH_LOG
Though this registry variable does not result in a direct performance impact, it
provides an option to disable the inclusion of the last active log file in any
on-line backups. When an on-line backup completes, the last active log file is
truncated, closed, and archived as part of the backup. This behavior gives us
a complete backup, including all of the logs required for the restoring of that
backup.

For a detailed description, please refer to 3.5.7, “Flushing logs during on-line
backup” on page 81.

8.1.3 DB2CHKBP
It is always important to ensure that the backup images are restorable. The
db2chkbp utility helps to test the integrity of a backup image and determine
whether or not it can be restored. If the backup was created using multiple
sessions, db2ckbkp can examine all of the files at the same time. Users are
responsible for ensuring that the session with sequence number 001 is the
first file specified. This utility also verifies backup images on tape.

Please follow these recommendations:

• Include the plan for backing up of databases during the design of the
system itself to ensure high performance.

• Have more than one source for taking backup (for example, tape drive) to
facilitate the use of multiple targets during backup, thereby improving
backup performance.

• Test the backup and tapes regularly.

• Perform a disaster recovery test at least once per year.

It is recommended to have the following values set:

util_heap_sz > 2* (backbufsiz + restbufsiz

Tips
Chapter 8. Tuning database utilities 275

8.1.4 DB2ADUTL
The utility db2adutl allows you to query, extract, verify and delete backups,
logs, and load copy images saved using Tivoli Storage Manager (formarly
ADSM). On UNIX based systems, this utility is located in the
$INSTHOME/sqllib/misc directory. Please see the Command Reference,
SC09-2951 for additional information. This utility also helps to ensure that the
backup images are in restorable form.

8.1.5 DB2LOOK
It is recommended to have all the DDL statements to reproduce the database
objects of a production database. The db2look tool extracts the required DDL
and also generates the required UPDATE statements used to replicate the
current statistics on the objects in test database, updates database
configuration, and updates database manager configuration parameters and
db2set statements, so that the registry variables and configuration parameter
settings on the test database match those of the production database. With
this tool, we can make a test system containing a subset of the production
system’s data, where access plans are similar to those that would be used on
the production system. Thus, without affecting the production system, we can
try to test performance measurements in the test system.

8.1.6 RUNSTATS, REORGCHK, and REORG
It is recommended to use the RUNSTATS command to collect current statistics
on tables and indexes when frequent insert, update and delete activity has
occurred, or when new indexes have been created since the last time the
RUNSTATS command was executed. Also, if the REORGCHK command indicates
that a reorganization should be done on the table data, you need to perform
REORG, then RUNSTATS, to provide the optimizer with current statistics. Even
though running statistics takes a considerable amount of time, checking and
performing RUNSTATS, REORG, and REBIND of applications before taking backup
will help you to get better performance before and after restore.

In the REORGCHK output, CLUSTERRATIO indicates the percentage of table data
that is organized according to an index. If this value is less than 80, the table
needs to be reorganized according to the most used index. When a table has
multiple indexes, you have to specify the most important index for
reorganizing the data. For organization of the indexes, 100*NPAGES/FPAGES
value has to be determined from the REORGCHK. If this value is less than 80, the
indexes should be dropped and re-created. DB2 UDB provides the facility to
perform an automatic index reorganization online without the need to force
the connected users and applications (see 4.2.2.1, “On-line index reorg” on
page 108).
276 DB2 UDB V7.1 Performance Tuning Guide

8.2 EXPORT utility

The EXPORT utility exports data from a database to one of several external file
formats. The data to be exported can be specified by a SELECT statement, or
by providing hierarchical information for typed tables (which we do not
discuss in this book). For additional information on typed tables, please see
the SQL Reference, SC09-2974. If the output file name already exists, then
the export process overwrites the contents of the file; the information is not
appended. You should have SYSADM or DBADM authority, or the CONTROL
or SELECT privilege, on each participating table or view.

The exported data can then be imported or loaded into another DB2
database, using the IMPORT or the LOAD utility, respectively; or it can be
imported into another application (for example, a spreadsheet)

The following information is required when exporting data:

• A SELECT statement must be provided for exporting the required data.

• The path and name of the file that will store the exported data should be
given.

• The format of the data in the input file (for example, IXF, WSF, or DEL) is
needed.

• A message file name must be specified.

• Sub-table traverse order within the hierarchy is needed when exporting
typed tables. When specifying the order, sub-tables must be traversed in
the pre-order fashion. When exporting typed tables, you must specify the
target sub-table name with (optionally) a WHERE clause. The export utility
uses this information, along with the traverse order, to generate and
execute the required SELECT statement. See Moving Data between Typed
Tables under Data Movement Utilities Guide and Reference, SC09-2955
for more information.

• While exporting LOB data, it is better to provide one or more paths to store
LOB files so that when the file space is exhausted in the first path, the
second path can be used for storage and, so on.
Chapter 8. Tuning database utilities 277

Also, check for restrictions for EXPORT in Data Movement Utilities Guide and
Reference, SC09-2955.

The file formats that can be exported are:

• Delimited ASCII format (DEL)

• Work sheet format (WSF)

• PC Integrated exchange format (IXF)

For additional information on file formats, please see the Data Movement
Utilities Guide and Reference, SC09-2955.

The EXPORT utility is an embedded SQL application and does SQL fetches
internally. This means that all optimizations on those SQL operations apply
for export too (for example, a large buffer pool size). Changes on the server
side that improve fetch performance can have a larger impact.

8.2.0.1 METHOD N column-name
Specifying target table column names while exporting as WSF or IXF, will
have considerable performance impact during IMPORT or LOAD process. If this
parameter is not specified during EXPORT, the column names in the table are
used. Usually, when you specify column name or column position during
IMPORT or LOAD operation, additional CPU time is required for parsing the data.
The LOAD utility does not support WSF format.

While exporting data in WSF format with BIGINTor DECIMAL data, only values
that fall within the range of type DOUBLE can be exported accurately. Even
though those values that do not fall within this range are exported,
importing or loading these values back may result in incorrect data,
depending on the operating system

Note

When using IXF, Version 7 tables with a schema name greater than 8
characters cannot be imported or exported with pre-Version 7 code
because of truncation occurs

Note
278 DB2 UDB V7.1 Performance Tuning Guide

8.3 IMPORT utility

The IMPORT utility inserts data from an external file with a supported file format
into a table, hierarchy, or updatable view. A faster alternative is LOAD;
however, the LOAD utility does not support loading data at the hierarchy level.
If the table or view receiving the imported data already contains data, you can
either replace or append to the existing data. After importing of data the
RUNSTATS utility should be run to get updated statistics. Some of the
advantages of using IMPORT are:

• Concurrent access to the table space

• Fire triggers

• Clustered index support

• WSF file format support

• Support to import into tables and views

• Superior granularity for commits

• Concurrent maintenance of constraints, automated summary tables,
referential integrity

• The IMPORT utility is an embedded SQL application and does SQL inserts
internally. This means that all optimizations on those SQL operations
apply to import too (for example, a large buffer pool size). Changes to the
server side that improve insert performance can have a much larger
impact.

These authorizations are required to use the IMPORT utility:

• To create a new table, you must have SYSADM authority, DBADM
authority, or CREATETAB privilege for the database.

• To replace data in an existing table or view, you must have SYSADM
authority, DBADM authority, or CONTROL privilege for the table or view.

• To append data to an existing table or view, you must have SELECT and
INSERT privileges for the table or view.

Do not set the agent pool size (NUM_POOLAGENTS) to zero. If the agent
pool size is zero, an agent process will be generated and terminated
repeatedly for each row, and will impact on the import performance
significantly.

Note
Chapter 8. Tuning database utilities 279

For further authorization information, see Administration Guide -
Implementation, SC09-2944.

Before invoking the IMPORT utility, you must be connected to (or able to
perform an implicit connect to) the database into which the data will be
imported. Since the utility will acquire a table level exclusive lock, you should
complete all transactions and release all locks on the target table. You can
invoke the IMPORT utility either from Command Line Processor (CLP) or from
Control Center.

The following information is required when importing data:

• The path and the name of the input file.

• The name or alias of the target table or view.

• The format of the data in the input file (such as IXF, WSF, DEL, or ASC)

• The type of operation, whether input data has to be inserted, or updated or
replaced.

• A message file name, if utility is invoked using an API call.

• The method to use: column location, column name, or relative column
position.

• The number of rows to insert before committing the changes (COMMITCOUNT).

• The number of file records to skip, if applicable (RESTARTCOUNT).

• The names of the columns within the table or view into which the data is to
be inserted.

• When working with typed tables, you may also need to provide:

- The method or order by which to progress through all of the structured
types. Ordering is important when moving data between table
hierarchies, because it determines where the data is moved in relation
to other data.

- The sub-table list. For details, see Moving Data Between Typed Tables
in Data Movement Utilities Guide and Reference, SC09-2955.

Also, check for Restrictions and limitations for Import in the Data Movement
Utilities Guide and Reference, SC09-2955.

The IMPORT utility creates two temporary files, one for data, and the other for
messages generated. These temporary files are located in the tmp

subdirectory under the sqllib directory or the directory indicated by the
DB2INSTPROF registry variable.
280 DB2 UDB V7.1 Performance Tuning Guide

If you receive an error while writing or opening data on the server, ensure the
following conditions:

• The directory exists.

• There is sufficient disk space for the files.

• The instance owner has write permission in the directory.

By default, automatic COMMITs are not performed for INSERT or the
INSERT_UPDATE option. They are performed only when COMMITCOUNT is not zero.

When you import a file to a remote database, internally a stored procedure is
called to perform the import on the server. This stored procedure will not be
called when:

• The application and database code pages are different.

• The import file is a multiple-part PC/IXF file.

• The method used is either column name or relative column position.

• The target column list provided is longer than 4 KB.

• An OS/2 or DOS client is importing a file from diskette.

• The LOBS FROM clause or the LOBSINFILE modifier is specified.

• The NULL INDICATORS clause is specified for ASC files.

8.3.1 METHOD options
Different method options parameters can be used to import different input file
types, such as ASC, IXF and DEL.

• L — Specifies the start and end column numbers from which to import
data. This method can only be used with ASC files, and is the only valid
option for that type.

• N — Specifies the names of the columns to be imported. This method can
only be used with IXF files.

• P — Specifies the indexes of the input data fields to be imported. This is
numbered from 1. This method can be only be used with IXF or DEL files.
But this is the only valid option for the DEL type files.

Specifying target table column names or a specific importing method (either
L, N, or P) makes the importing to a remote database slower, due to
additional tasks in parsing.
Chapter 8. Tuning database utilities 281

8.3.2 MODIFIED BY COMPOUND=x
If this option is used, then DB2 will insert one block at a time, rather than one
row at a time. This can give you better performance results.

In this option, x is a number between 1 to 100 inclusive. IMPORT uses
non-atomic compound SQL to insert the data, and x statements will be
attempted each time.

The above IMPORT command will wait for the SQL return code about the insert
results after inserting 100 records, instead of inserting each record.

If this modifier is specified, the transaction log must be large enough to
accommodate the number of rows in the data file or number of rows specified
by the COMMITCOUNT, if it is specified. It is recommended to use COMMITCOUNT

option along with COMPOUND to avoid transaction log overflow.

This modifier is incompatible with INSERT_UPDATE mode, USEDEFAULTS,
hierarchical tables or generated column modifiers, that includes
INDENTITYMISSING, IDENTITYIGNORE, GENERATEDMISSING and GENERATEDIGNORE.

See the Data Movement Utilities Guide and Reference, SC09-2955 for more
information.

8.3.3 COMMITCOUNT n
By default, with no COMMITCOUNT specified, an IMPORT will issue a commit at the
end of a successful IMPORT. Requesting periodic COMMITs reduces the number
of rows that are lost if a failure occurs during the import operation. It also
prevents the DB2 logs from getting full when processing a large input file.

If an import operation is interrupted, a COMMITCOUNT was specified, the table is
usable, and it will contain the rows that were loaded up to the last COMMIT, then
you can restart the import operation, or accept the table as is. In case you
want to restart the import operation, you can specify the number of file
records to skip (equivalent to the number successfully imported and
committed already). Though a smaller COMMITCOUNT improves concurrency and
enables us easily to control and proceed IMPORT, it will provide additional CPU
overhead.

CONNECT TO SAMPLE
IMPORT FROM myfile OF IXF MODIFIED BY COMPOUND=100 INSERT INTO mytable
282 DB2 UDB V7.1 Performance Tuning Guide

8.3.4 Logging
During an insert operation, every row that is being inserted into a table will be
written to the DB2 logs for recovery purpose. When you are doing a mass
import, then it is necessary to have the correct number of primary and
secondary logs, with appropriate log file size, to avoid getting a transaction
log full error. A simple rule of thumb, used to calculate log file size, is 3 times
the table size if there is no index and 5 times the table size if there is an
index, and the total log file size limitation of 32 GB. That is, (LOGPRIMARY +
LOGSECOND) * LOGFILSZ * 4 K should be less than 32 GB.

The log full condition is possible with both circular and archival logging. In the
case of circular logging, if an open transaction holds the first log file, when
other transactions use the last defined log file, they cannot continue by
writing over the first. Similarly, archival logging cannot have more than the
maximum number (LOGPRIMARY + LOGSECOND) of defined active log files. Until the
first log file in the sequence of active log files is released, the next one cannot
be created.

8.3.4.1 Log buffer size (LOGBUFSZ)
Buffering the log records will result in more efficient log file I/O, because the
log records will be written to disk less frequently, and more log records will be
written at each time. This parameter allows you to specify the amount of the
database heap (defined by the DBHEAP parameter) to use as a buffer for log
records before writing these records to disk. The log records are written to
disk when one of the following occurs:

• A transaction commits or a group of transactions commit, as defined by
the MINCOMMIT configuration parameter.

• The log buffer is full.

• As a result of other internal database manager event, like logger EDU
(db2logger).

• When the log file is full.

If logging is the primary constraint during IMPORT, then do the following:

• Make sure that the application which does the import operation commits
more often (decrease the COMMITCOUNT value so that it will commit more
often).

• If applicable, perform a LOAD operation instead of an IMPORT, since it does
less logging.

• Increase the number of secondary logs (LOGSECOND), since these will get
allocated when DB2 needs them.
Chapter 8. Tuning database utilities 283

For more information, please see Appendix B: Differences Between the
Import and the Load Utility in the Data Movement Utilities Guide and
Reference, SC09-2955.

8.4 LOAD utility

The LOAD utility moves data into newly created tables or into tables that
already contain data, extends existing indexes, and generate statistics. Data
from the EXPORT utility can be loaded with the LOAD utility. Usually LOAD is used
with large data sets and accepts both binary and character based data. Here
you can also specify the number of rows to load, but loaded data information
is not logged.

You should have LOAD authority to run the LOAD utility without the need for
SYSADM or DBADM authority. This gives database administrators more
granular control over the administration of their database. See the Data
Movement Utilities Guide and Reference, SC09-2955 for more information.
Since all load processes are owned by the instance owner, the instance
owner must have read access to input data files. These input data files must
be readable by the instance owner, regardless of who invokes the LOAD utility.
Also, check for Restrictions and Limitations for LOAD in Data Movement
Utilities Guide and Reference, SC09-2955.

The LOAD utility is faster than the IMPORT utility for bulk data, because it writes
formatted pages directly into the database, while the import utility performs
SQL inserts. The LOAD utility can take advantage of intra-partition parallelism
and I/O parallelism. Loading data is a heavily CPU-intensive task. The LOAD

utility takes advantage of multiple processors for tasks such as parsing and
formatting data. Also, the LOAD utility can use parallel I/O servers to write the
data to the containers in parallel.

The LOAD utility works in three phases:

1. Load — During this phase, data is loaded into the table. Index keys and
table statistics are collected and partially sorted, if indexes are defined.
Associated table spaces are in load-pending state from the beginning to
the end of the build phase.

2. Build — During this phase, indexes are created based on the index keys
collected during the load phase, and the sort is completed. Associated
table spaces are in delete-pending state from the end of the build phase
until the end of the delete phase.
284 DB2 UDB V7.1 Performance Tuning Guide

3. Delete — During this phase, the rows that caused a unique key violation
are removed from the table. These are placed in the exception table, and
messages about the rejected rows are written to the message file.

Using the LOAD utility is a very efficient way to insert data, for the following
reasons:

• Data I/O is performed only once for all three phases.

• In case of index creation, LOAD uses a heavily optimized sort routine which
is considerably faster than the generic sort routine of the DBMS.

Since the LOAD utility will lock the table spaces to which the table belongs, you
should complete all transactions and release all locks by performing a COMMIT

or ROLLBACK.

If a particular sequence is desired, the data has to be sorted before LOAD,
since the LOAD utility will load the data in the same sequence that appeared in
the input file.

The Version 7 LOAD utility can load data residing on a remotely connected
client, by specifying the CLIENT parameter. Data residing on the server may be
in the form of a file, tape, or named pipe. Data residing on a remotely
connected client may be in the form of a fully qualified file or named pipe.
This CLIENT option is ignored if the load operation is not being invoked from a
remote client. Separate files containing LOB values, when the lobsinfile file
type modifier is specified, should be located on the server. Also, if the CLIENT

option is specified, the path must be fully qualified.

Since the LOAD utility does not check any constraints defined on the table
(such as check constraints and referential constraints) except unique
constraints, you need to execute a SET INTEGRITY statement after the
loading to make the table usable. If all the load operations are performed in
INSERT mode, the SET INTEGRITY statement will check the table for constraint
violations incrementally, by checking only the appended portion of the
table.

Note

In Version 7, SORT BUFFER and temporary sorting directories for LOAD are now
obsolete. LOAD uses a sort heap for sorting, and performs I/O in temporary
table spaces.

Note
Chapter 8. Tuning database utilities 285

For additional information on the LOAD utility, see the Command Reference,
SC09-2951. For new LOAD behavior and changes, see Changes to Previous
Load Behavior Introduced in Version 6 and Version 7, under the Data
Movement Utilities Guide and Reference, SC09-2955.

The following load parameters are now intelligently defaulted (self-tuning
feature) at runtime. If you do not specify them, the loader will examine the
system configuration and available resources, at runtime, and select an
appropriate value for each. They are

• Data buffer
• Sort buffer
• CPU parallelism
• Disk parallelism

In making these decisions, the loader consider factors such as:

• Available memory remaining in the utility heap
• Number of on-line CPUs (SMP)
• Table design (whether it has indexes, or LONG data)
• Number of table space containers

8.4.1 Command options
Although there are many command line options for LOAD, we will consider just
a few which will provide a considerable amount of performance improvement.

8.4.1.1 SAVECOUNT n
This parameter value represents the interval, in number of rows, between
consistency points. During the LOAD process, after every n rows are loaded, a
consistency point will be established. Table objects like long field, LOB, BLOB
are stored in table spaces. I/O to each table space is performed in extents
and the extent size is measured in 4K pages, specified during table space
creation parameter. LOAD builds extents for each table object in the
appropriate form, converts into page count, and rounded up to intervals of
extents size and writes the resulting pages to disk.

If a very large number of rows is to be loaded, it is recommended to specify a
large SAVECOUNT value, thereby reducing time for the synchronization activities
performed to establish a consistency point. A LOAD RESTART operation will
automatically continue from the last constancy point. The default value is 0,
means no constancy points will be established.
286 DB2 UDB V7.1 Performance Tuning Guide

8.4.1.2 COPY YES or NO
Specifying COPY YES (when forward recovery is enabled) will save a copy of
the loaded data so that the table can be recovered. This reduces load
performance, because all the loaded data is copied; however, you need to
specify this option if you want the table to be recoverable (or you need to take
an offline backup). Specifying multiple target devices or directories on
different file systems, using TO device/directory, can reduce I/O time for the
backup image, thereby a performance gain. Note that tape is not supported in
OS/2, and copy to tapes in SCO UnixWare 7 is not supported.

COPY NO may reduce overall performance, because if the forward recovery is
enabled, the table is placed in backup pending state, and the database, or
selected table spaces, must be backed up before the table can be accessed.
When forward recovery is enabled and you want the target table to be
recoverable, specify COPY YES.

8.4.1.3 DATA BUFFER buffer-size
DATA BUFFER can reduce I/O waits when loading long fields or LOBs. This
memory is allocated directly from the utility heap (UTIL_HEAP_SZ). If the value is
not specified, an intelligent default (self-tuning future) is calculated by the
loader by examining the system configuration, and available resources, at
runtime. While specifying this value, ensure that this buffer be several extents
in size. An extent is the unit of movement for data within DB2 UDB, and this
size can be one or more 4KB pages. It is highly recommended not to specify
this parameter, so that DB2 will allocate the best value.

8.4.1.4 CPU_PARALLELISM n
This parameter value specifies the number of processes that the load utility
will spawn for parsing, converting, and formatting data records, while building
the table data objects. If your machine has the capability, this parameter will
exploit intra-partition parallelism and significantly improve load performance.
This parameter can be used in non-SMP environments also, but performance
benefit is not perceptible.

CPU parallelism does not lose data set order, that is, the data provided in a
sequence a, b, c, d will be loaded in parallel, but will arrive on disk in the
identical order a, b, c, d.

Although you can specify a maximum value of 30, the utility adjusts the value
if there is insufficient memory. If the value of this parameter is zero, or has not
been specified, the load utility uses an intelligent default value, usually based
on the number of CPUs available, at run time. It is highly recommended not to
specify this parameter, so that DB2 will allocate the best value.
Chapter 8. Tuning database utilities 287

Specifying a small value for the SAVECOUNT parameter causes the loader to
perform many I/O operations to flush both data and table metadata. When
CPU_PARALLELISM is greater than 1, the flushing operations are asynchronous,
permitting the loader to exploit the CPU. When CPU_PARALLELISM is set to 1, the
loader waits on I/O during consistency points.

8.4.1.5 DISK_PARALLELISM n
This parameter values specifies the number of processes used by the load
utility to write data records to disk. Use this parameter to exploit available
containers when loading data, and get significant improvement in load
performance. The maximum number allowed is the greater of four times the
CPU_PARALLELISM value (used by the LOAD utility), or 50. If the value of this
parameter is zero, or has not been specified, the load utility uses intelligent
default value based on the number of table space containers and the
characteristics of the table. It is highly recommended not to specify this
parameter, so the LOAD utility will use an intelligent default value.

8.4.1.6 MODIFIED BY filetype-mod
There are few valid file type modifiers that will improve the performance of the
LOAD utility significantly. They are as follows:

FASTPARSE
The modifier FASTPARSE will reduce the syntax checking and data checking that
is performed on user-supplied column values, and enhance performance.
Though this option performs sufficient data checking to prevent a
segmentation violation or trap, this option should be used only when the data
being loaded is known to be valid and architecturally correct, since FASTPARSE

assumes that your data is clean and yields a performance gain when
CPU-bound.

This increases performance more on ASCII data than on PC/IXF data, since
IXF is a binary format, and FASTPARSE affects parsing and conversion from
ASCII to internal forms. Data that is in correct form will be loaded correctly
and care must be taken to use this modifier with clean data only. If you have
confidence that your data is clean, use this option for additional performance
gains, especially with character data files (DEL and ASC).

Parallelism is not supported in cases where tables include LOB or LONG
VARCHAR data.

Note
288 DB2 UDB V7.1 Performance Tuning Guide

ANYORDER
Use this file type modifier to suspend the preservation of source order in the
data being loaded, and gain performance on SMP systems. This modifier is
used along with the CPU_PARALLELISM parameter. If the data to be loaded is
presorted, ANYORDER may corrupt the presorted order, and the benefits of
presorting will be lost for subsequent queries. If CPU_PARALLELISM is 1, then this
option is ignored.

BINARYNUMERICS
Use this type of file-type modifier only when loading positional numeric ASC
(non-delimited ASCII) data into fixed length records specified by the RECLEN

option (NOEOFCHAR is assumed). When numeric (INT, REAL, FLOAT, and not
DECIMAL) data be in binary form and not in the character representation,
avoids costly conversions, thereby providing a performance gain. Use IXF or
positional ASCII with BINARYNUMERICS whenever possible, since binary data
loads much faster than text data.

While using BINARYNUMERICS, the following rules apply:

• Binary data in the load source file is assumed to be big-endian, regardless
of the platform on which the load operation is running.

• Data lengths MUST match their target column definitions.

• FLOATs must be in IEEE Floating Point format.

• No conversion between data types is performed, with the exception of
BIGINT, INTEGER, and SMALLINT.

This option is not supported if SAVECOUNT > 0, since the recovery process
after a consistent point requires that data to be loaded in sequence. When
SAVECOUNT > 0, avoid using the ROWCOUNT option along with ANYORDER, because
which row(s) get loaded cannot be guaranteed

Note

NULLs cannot be present in the data for columns affected by this modifier.
Blanks are interpreted as binary value when this modifier is used.

Note
Chapter 8. Tuning database utilities 289

PACKEDDECIMAL
DB2 loads packed decimal data directly, since the BINARYNUMERICS modifier
does not include the DECIMAL field type. Use this file type modifier to improve
performance when loading positional numeric ASC data into fixed-length
records specified by RECLEN option.

8.4.1.7 STATISTICS YES
Use this operation to collect data distribution and index statistics for the table
and for any existing indexes more efficiently than by the RUNSTATS utility, with
compromise on LOAD performance. This option is supported only if the load
operation is in REPLACE mode.

Apart from tuning LOAD, it is recommended to tune job stream also. Thus,
when you consider the end-to-end time to get the table populated and ready
for access, it is recommended to combine index creation, and RUNSTATS with
your load. With a single pass through the data, you can create an index,
collect statistics, and make the table available for queries (single I/O against
many operations).

Once the statistics are updated, applications can use new access paths to
the table data from the latest statistics. However, new access paths to the
table can be created by rebinding the application packages using the REBIND

command.

When distribution statistics are being gathered or when loading data into
large tables, it is recommended to have a larger value for the database
configuration parameter Statistics Heap Size (STAT_HEAP_SZ). For more
information about STAT_HEAP_SZ, see Database Parameters, in the
Adminstration Guide: Performance, SC09-2945.

8.4.1.8 NONRECOVERABLE
This parameter can improve the load performance when forward recovery is
enabled (LOGRETAIN or USEREXIT is ON). Use this parameter if you do not need
to recover load transactions against a table. Many users do not want certain
loaded tables to be recoverable because the data is transient (replaced
frequently). When LOGRETAIN or USEREXIT is ON, performing a load operation
without the COPY YES option will bring the table space into backup pending
state; however, using the NONRECOVERABLE option completes the load operation
without leaving the table spaces in backup pending state. This load is
non-recoverable, although the database has LOGRETAIN and USEREXIT ON, and
a copy of the loaded data does not have to be made during the load
operation.
290 DB2 UDB V7.1 Performance Tuning Guide

Rollforward will skip non-recoverable LOAD and ignore subsequent
transactions against the table; therefore, further actions against this table are
ignored. After rollforward recovery, a table may only be replaced (using
IMPORT or LOAD) or dropped. Load performance is enhanced, because no
additional operation is performed, apart from movement of data into the table.

8.4.1.9 Indexing mode
This option specifies whether the LOAD utility is used to rebuild indexes or to
extend them incrementally. Supported modes include AUTOSELECT, REBUILD,
INCREMENTAL, and DEFERRED.

• REBUILD performs best when appending a large percentage of new data
(for example, >50%)

• INCREMENTAL performs best when appending small volumes of data (for
example, <10%)

• The default behavior is AUTOSELECT. This mode uses an internal runtime
performance costing model to select between REBUILD and INCREMENTAL

modes. AUTOSELECT determines best behavior in the grey zone of 10 to 50.

• DEFERRED is best when performing multiple LOAD INSERT operations or when
you would rather not maintain indexes during load.

For information about when the above modes can be used, see Chapter 3:
LOAD in the Data Movement Utilities Guide and Reference, SC09-2955.

8.4.2 Considerations for creating an index
When tuning index creation performance, the amount of memory dedicated to
the sorting of index keys during a LOAD operation is controlled by the SORTHEAP

database configuration parameter. Tuning sort has a direct impact on load
performance when the target table has indexes. Therefore, tuning sort also
tunes aspects of load.

8.4.2.1 SORTHEAP
This parameter defines the maximum number of private memory pages used
for private sorts, or the maximum number of shared memory pages to be
used for shared sorts. If the sort is a private sort (this is what LOAD uses), then
this parameter affects the agent private memory. If the sort is a shared sort,
then this parameter affects the database global memory. This sort heap is the
area where data is sorted.
Chapter 8. Tuning database utilities 291

This parameter indicates the number of 4K pages of memory we will try to
allocate when sorting index keys for each index defined on the table. If the
table has 4 indexes, then we will try to allocate 4 * SORTHEAP pages in total. In
order to control the total amount of memory allocated, another configuration
parameter, sort heap threshold (SHEAPTHRES), is also significant.

When the total amount of instance-wide memory allocated for private sorts
exceeds SHEAPTHRES, then subsequent sorts will try to allocate fewer than
SORTHEAP pages of memory. SHEAPTHRES should be set to some reasonable
multiple of SORTHEAP.

Sort overflows (or sort-spill) are sorts that ran out of sort heap and required
disk space for temporary storage. That is, the data is divided for several sort
runs and stored in a temporary table space that will be merged later. These
sorts are not efficient, and when this value is consistently high for a number
of intervals, then it may be necessary to increase the SORTHEAP configuration
parameter. If the sort spill occurs even after increasing the SORTHEAP

parameter, make the buffer pool for temporary table space large enough to
minimize the amount of disk I/O.

To examine these configuration parameters, issue these commands:

DB2 GET DBM CFG | grep -i sheapthres
DB2 GET DBM CFG FOR <dbname> | grep -i sortheap

To set the sheapthres value to 32768 (or whatever value you desire):

DB2 UPDATE DBM CFG USING sheapthres 32768

To set the sortheap value to 8192; try this, using 8192 of 4K pages for sorting
each index:

DB2 UPDATE DB CFG FOR <dbname> USING sortheap 8192

After changing these values, it is best to disconnect from the database, do a
DB2STOP and DB2START and then continue, otherwise, the new values might not
be used.

In terms of performance, the higher the value of SORTHEAP, the less likely a
sort-spill will be and you will get better performance due to reduced I/O.

In V6 and later, sort-spills go to temp tables (there are no temporary files as
in V5). In order to improve I/O during spill processing, it is important to do the
following:

1. Make sure that the buffer pool for your temporary tables pace is a
reasonable size. If it is too small, this could adversely affect performance.
292 DB2 UDB V7.1 Performance Tuning Guide

2. Make sure that the temporary tables pace is defined using
multiple-containers, each defined on a separate device. This will help to
increase I/O parallelism during spill processing.

While increasing SORTHEAP, see whether SHEAPTHRES also needs to be
increased.

8.4.2.2 SHEAPTHRES
This performance variable sort heap threshold (sheapthres), is used to tune
the database manager configuration. This controls the total amount of
memory for sorting across the entire instance for all sorts. On the first
connect we calculate the total size of the database shared memory set, which
includes BUFFERPOOLS, UTILHEAPSZ, SHEAPTHRES, PACKAGE CACHE, and LOCKLIST. The
database shared memory set cannot be dynamically modified, that is, you
must terminate all connections to the database and reconnect.

Please see 6.4.1, “Sorting methods” on page 201 for more information.

The performance of LOAD can be improved by installing high performance
sorting libraries from third party vendors to create indexes during load
operation. A few of the vendor extensions include:

• LOAD utilities for DB2 from BMC, and Platinum.

• Host driven data loading product, Optiloader from LSI, provides host
centric control of loading jobs, and additional functionality, such as
UPSERT.

• Pluggable sort products to enhance index creation available from
SyncSort

• PatrolDB, Unload utility from BMC.

8.4.3 Load query
You can use the LOAD QUERY command to check the status of a load operation
during processing. When you see very poor load performance, you should
execute this command and check the current status of the processing load.
For example, if the input data does not match the target columns (data type,

Whenever you adjust the sorting configuration parameters, use an
operating system monitor to track any changes in system paging. If the
post threshold sorts are high, you can increase sheapthres and/or decrease
sortheap.

Note
Chapter 8. Tuning database utilities 293

data length, and so on), the LOAD utility will generate numerous warning
messages which will degrade performance.

8.4.4 Loading data into a table with clustered index
Newly inserted rows often cannot be placed in the same physical sequence
as the logical sequence defined by the index. This can be avoided by using a
clustered index. The cluster factor of a clustered index is maintained or
improved dynamically as data is inserted into the associated table, by
attempting to insert new rows physically close to the rows for which the key
values of this index are in the same range. Only one clustered index may
exist for a table, so the CLUSTER option during CREATE INDEX may not be
specified if it was used in the definition of any existing index on the table.
Also, a clustered index may not be created on a table that is defined to use
append mode, and is disallowed if a nickname is specified. Here are some
advantages in using a clustered index:

• Use a CLUSTER INDEX to optimize queries that retrieve multiple records in
INDEX order.

• When a CLUSTER INDEX is defined, use ALTER TABLE..PCTFREE nn before LOAD

or REORG. This will leave nn% free space on the table’s data pages after
LOAD and REORG.

Since the LOAD utility preserves the order of the input file and does not
consider the cluster factor, when load data into a table with a clustered index,
you should:

• Use the IMPORT utility instead of the LOAD utility.

• If you are performing the LOAD in REPLACE mode (or loading into a new
table), pre-sort the input file and execute the LOAD command without the
ANYORDER option.

• If you are performing the LOAD in APPEND mode, execute the REORG TABLE

command after the load.

8.5 RESTORE DATABASE utility

Backing up the database allows recovery of the database either fully or
partially in case, a database become unusable due to failure of hardware or
software (or both), or an operating system failure. The backup and recovery
type depends on how the logging mode has been set. You can use this
command only when your database has been previously backed up using the
BACKUP DATABASE command.
294 DB2 UDB V7.1 Performance Tuning Guide

RESTORE DATABASE can be invoked by using the Command Line Processor
(CLP), the Control Center, or administrative API, sqlurestore. It rebuilds a
damaged or corrupted database that has been backed up using the BACKUP

DATABASE command.

You can restore backup images which are produced by previous versions
(V2.x or higher) of DB2, in case migration is required, it will be issued
automatically at the end of restore. If you are using the Control Center, then
you cannot restore backups that were taken in previous versions of DB2.

The database to which you restore the data may be the same one as the data
was originally backed up from, or it may be different (in addition to being able
to restore to a new database). If, at the time of backup operation, the
database was enabled for roll-forward recovery, the database can be brought
to the state that it was in, prior to the occurrence of the damage or corruption,
by issuing ROLLFORWARD DATABASE after successful execution of RESTORE
DATABASE.

You can select a type at the time of restore, from three types:

1. A full restore of everything from the backup.

2. A restore of only the recovery history file.

3. A subset of the table spaces in the backup.

A database seed is a unique identifier of a database that remains constant for
the life of the database. This seed is assigned by the database manager
when the database is first created. The seed is unchanged following a restore
of a backup, even if the backup has a different database seed. DB2 always
uses the seed from the backup. You need to consider the following before
running the RESTORE command:

• The database manager must be started before restoring a database.

• You must have SYSADM, SYSCTRL, or SYSMAINT authority to restore to
an existing database from a full database backup. To restore to a new
database, you must have SYSADM or SYSCTRL authority.

• To restore to an existing database, you require a database connection. To
restore to a new database, you require instance attachment. To restore to
a new remote database, it is necessary to first attach to the instance
where the new database will reside.

• The type of restore: full restore, restore recovery history file, or table
space.

• When you use Tivoli Storage Manager (TSM) utility, any restrictions of that
utility should also be considered.
Chapter 8. Tuning database utilities 295

• If there is more than one backup on the source media, then the TAKEN AT

parameter has to be used to specify the timestamp when the backup was
taken. If you use TSM and do not specify the TAKEN AT parameter, TSM
retrieves the latest backup copy.

• If a system failure occurs during any stage of restoring a database, you
cannot connect to the database until you reuse the RESTORE command and
successfully complete the restore.

• If the code page of the database being restored does not match a code
page available to an application; or, if the database manager does not
support code page conversions from the database code page to a code
page that is available to an application; then the restored database will not
be usable.

• Directory and file containers are automatically created, if they do not exist.
No redirection is necessary unless the containers are inaccessible for
some reason.

For additional information, please see Chapter 8: Recovering a Database in
the Administration Guide: Implementation, SC09-2944.

8.5.1 Command options
Although there are many command line options for RESTORE, we will consider
just a few of the command options that can provide a considerable amount of
performance improvement while using the RESTORE utility.

8.5.1.1 OPEN n SESSIONS and WITH n BUFFERS option
While using the OPEN num-sessions SESSIONS option along with TSM (formally
ADSM), the OPEN x sessions will establish x connections to the TSM servers.
Thus, num-sessions signifies the number of I/O sessions to be used with TSM
or the other vendor product. The default for num-buffers is 2. However, a
larger number of buffers may be used when multiple sources are being read
or when parallelism parameter is increased; this will considerably reduce the
amount of time required to do a restore.

The number of buffers to allocate should be #sessions +#parallelism +2

and (num-buffers * buffer-size) < util_heap_sz.

Parallelism is discussed in the following section.

Tips
296 DB2 UDB V7.1 Performance Tuning Guide

8.5.1.2 PARALLELISM n
Specifies the number of buffer manipulators to be spawned during the restore
process. The default value is 1. For restore, you can increase the number
higher but not higher than the number of TSM Client sessions you have
started. As well as you will need at least the parallelism number of buffers
allocated.

8.5.1.3 BUFFER buffer-size
You may specify the number of pages (4K) to use for each restore buffer
when you invoke the RESTORE command. When restoring a database, the data
is first copied from the backup media to an internal buffer. Data is then written
from this buffer to the target database media when the buffer is full. Using
large restore buffers helps to improve the performance of the restore utility.

We recommend setting the restore buffer size to a multiple of the extent size;
however, the value you specify must be equal or a multiple of the backup
buffer size that you specified when the backup image was taken. Otherwise,
the smallest acceptable size of the buffer (4KB) is used for the restore buffer.
If you do not specify the number of pages, each buffer will be allocated based
on the database manager configuration parameter RESTBUFSZ.

You can also specify the number of the restore buffer. When restring from
multiple locations using multiple sessions of TSM or multiple local devices, a
larger number of buffers may be used to improve performance.

The number of buffers to allocate should be:

Number of Buffers = #sessions +#parallelism +2

and

(num-buffers * buffer-size) < UTIL_HEAP_SZ

On restore, parallelism can be as high as the # sessions used.

Note

When you set the number and size of the restore buffer, try to use more
buffers of smaller size rather than a few large buffers.

Note
Chapter 8. Tuning database utilities 297

If variable blocking is used for the tape device, be sure to use a BUFFER size
equal to or less than the maximum blocking factor of the tape device. For
example, for a tape drive with maximum blocking on 64 KB, the buffer size
should not exceed 16 (4KB) pages.

8.5.2 Configuration parameters
Along with the command options, we can also tune the RESTORE related
database manager configuration parameters to gain considerable impact on
performance. The customer’s specific needs and environment will determine
the tuning effort on these parameters.

8.5.2.1 Utility heap size (util_heap_sz)
This is the maximum database shared memory that can be used
simultaneously by the BACKUP, RESTORE and LOAD utilities and during the load
recovery process. It is recommended to use the default values unless your
utilities run out of space; in that case, increase this value. We cannot run
these utilities concurrently when the value is set too low because of memory
constraints.

8.5.2.2 Restore buffer size (restbufsz)
If the BUFFER size is not explicitly specified when issuing the RESTORE

command, this configuration parameter value is used. This specifies the size
of buffer used when restoring the database.

It is recommended to have the following values set:

util_heap_sz > 2* (backbufsiz + restbufsiz)

Tips
298 DB2 UDB V7.1 Performance Tuning Guide

Chapter 9. Resolving performance problems

When an application is expected to have a better response time than is being
obtained, the process of diagnosing the problem starts. If the workload on a
system increases, the throughput of the system may be maintained, but
individual application response time may be degraded.

In this chapter, we discuss various conditions that may cause performance
problems and explain how to resolve them. Finally, we show a sample case to
improve the performance using the Explain and the db2batch tools.

9.1 Identifying the cause

As in any other problem-determination technique, the first step requires the
database administrator to be able to reproduce or identify the problem. Some
symptoms may be sporadic; others may be permanent.

To identify the performance problem, ask your users, who should be able to
tell you which operations of an application are suffering from performance
problems. This will help you determine exactly when to monitor your system
in order to isolate the problem. Alternatively, you may want to perform a
general analysis of your system to try to isolate possible bottlenecks during
peak periods.

After the problem is reproduced or identified, it will fall into one of two groups:

1. Problems affecting one application or a group of applications:

Problems that affect a single application or a group of applications can be
further subdivided into two categories:

- Applications that have had a good performance history in a
development or testing environment, but do not perform as expected
when working against production databases. Working against low
volumes of data may hide problems. Some of the non-detected
problems may be those associated with casting, lack of indexes, joins,
sorts, access plans, isolation levels, or size of the answer set.

- Applications whose behavior is erratic. These applications may usually
have good response times, but under certain conditions, their response
times are very degraded. These applications may have
concurrence-related problems: deadlocks, waits, and so on.
© Copyright IBM Corp. 2000 299

2. Problems affecting all applications:

Problems that affect all applications usually appear when changes are
made to data loads, the number of users, the operating system, or the
database configuration parameters. The cause of these types of problems
is usually found in the following areas:

- Configuration parameters (sorts, buffer pool, logs, lock list).
Sometimes, this is not caused by a modification in the parameter, but
by the environment itself. Bigger tables that require a larger sort heap
or the updating of more rows in a table may require a larger log buffer.
Also, more users exhausting the lock list and provoking concurrence
problems can cause problems that affect all database applications.

- Operating system problems, such as I/O contention or excessive
paging.

- Network problems, if the clients or applications are remote.

- Data access problems, where access plans may be obsolete, statistics
may not have been updated, or packages may not be rebound.

9.2 Application problems

When you find performance problems affecting one or a group of
applications, the first thing you should do is to check whether most of the
elapsed time is spent in the applications, or in DB2. If most of the time is
being spent in the applications, it is not worthwhile to tune DB2 before the
application problem is eliminated.

For CLI, ODBC, JDBC or SQLJ applications, the CLI/ODBC/JDBC trace
facility (see Chapter 5, “Monitoring tools and utilities” on page 119) is a good
tool you can use to perform this step.

Once you have found that most of the elapsed time is spent in DB2, then you
should analyze the SQL statements issued in the application. Pick up the
most time-consuming SQL statements from the dynamic SQL Snapshot
Monitor (for dynamic SQL) or from the Statements Event Monitor (for both
dynamic and static SQL), then analyze these SQL statements using the
following two basic procedures:

• Explaining the statements

• Monitoring the application/database
300 DB2 UDB V7.1 Performance Guide

9.2.1 Explaining the statements
This can be done through Visual Explain or any of the Explain tools. The
access plan will show the work that the database manager needs to perform
to retrieve the answer set. This should be compared to the access plan that
you expected.

The access plan provides information not only about the work that the
database manager has to perform, but also how the work will be done.

Run custom queries to get information about your Explain plans and check
the following:

1. Search for SORT, or GROUP BY operators on sets of columns and base
tables that occur frequently, which could be beneficial as an index or
summary tables.

2. Search for expensive operations, such as large or spilling sorts, high
buffer usage, or high table queue usage.

3. Search for expensive plans to further examine for database optimizations.

4. Search for common predicates that could form potential start/stop keys for
an index.

5. Check for missed index opportunities.

6. Look for any other better join opportunities.

7. Search for poor predicate selectivities due to insufficient statistics.

8. Search for FETCH used because an index could use INCLUDE columns.

9. Search for I/O increase during SORT (using vmstat or iostat).

If you are not satisfied with the access plan being shown, you can obtain
different access plans for different levels of optimization (see 7.3.2.3, “Tune
optimization level” on page 248) without needing to execute the statement.

For dynamic SQL statements, different levels of optimization will deliver
different access plans, but they also will show different times needed to
prepare the statement. The balance of the time required to prepare the
statement and the time required to execute it will yield better performance for
the statement.

The steps of an access plan and its description are presented in Description
of db2expln and dynexpln Output in the Administration Guide: Performance,
SC09-2945.
Chapter 9. Resolving performance problems 301

9.2.2 Monitoring the application/database
The application can be monitored through the performance monitor, taking a
snapshot of the application, or defining an event monitor for the statements or
the transaction. For dynamic SQL statements, the db2batch tool also will
provide snapshots (for the application, database, and instance, if the
appropriate level of detail is selected) and will measure the response time of
the statement/statements. Application monitoring will collect values for data
elements that can point to performance problems.

Data elements whose values are collected when monitoring the application
include: deadlocks; lock escalations; lock waits and lock wait time; index and
data reads and writes; number of sorts and sort time; and the package cache
hit ratio.

9.3 Database configuration problems

Many of the database configuration problems are detected through
SQLCODEs or SQLSTATEs that are returned to applications. If the error
handler routines are well written, they should present the error to the end
user. These errors should lead to the cause of the problem and will facilitate
the problem-determination process.

When a database configuration problem is suspected, but there is no
certainty about the conflicting parameter or parameters, the database should
be monitored. This monitoring can be achieved using the snapshot monitor,
the event monitor or a combination of these. When planning to monitor the
database environment, you need to choose a significative period of time for
monitoring to take place; such as a 60-minute interval during peak hours.
Take time to examine the output collected from the monitoring tools, and
check for data elements that can point to specific configuration problems.
These data elements can be high-water marks, overflows or rejections.

Define a method for resolving problems, and use it consistently. Here are
some guidelines for establishing a problem-determination method:

• Choose the monitoring tool.

• Define the period of time and the environment in which the database will
be monitored.

• Start monitoring the database

• Obtain the results of the monitoring tool.
302 DB2 UDB V7.1 Performance Guide

• Based on the results of the monitored data elements, select the parameter
to be modified. Modify only the selected configuration parameter.
Remember to restart the database.

• Reestablish the original monitoring environment, if possible.

• Monitor again, obtaining the results of the data elements with the new
value of the configuration parameter.

• Compare the results obtained.

• If results are not positive, reestablish the configuration parameter to its old
value.

When a database is monitored, a large set of values for data elements may
be collected. Some values may point directly to the cause of a problem, but
that is not always the case. Table 12 shows some of the data elements that
can be collected, their related configuration parameters and the problems
caused by incorrect configuration values. The table is only an example and is
not intended as a complete listing for problem determination. Many of the
data elements collected will relate directly to configuration parameters. When
using the performance monitor, is it possible through the online help to
identify which configuration parameter relates to the data elements.

Table 12. Data elements and configuration problems

Data element Configuration
parameters

Probable causes

Catalog cache overflows catalogcache_sz Catalog cache is too small.

Catalog cache heap full catalogcache_sz
dbheap

The dbheap is too small
compared to catalog
cache. The dbheap may fill
up if the size of the buffer
pool is increased.

Post threshold sorts sortheap
sheapthres

Sort heap threshold is too
small.

Sort overflows sortheap If too many, applications
are requiring a bigger sort
heap.

Lock time outs locklist If too many, there is a
concurrence problem

Lock waits locklist If too many, there is a
concurrence problem
Chapter 9. Resolving performance problems 303

The best way to evaluate if there are “too many” overflows, time-outs, or
waits is to compare results to previous results or a similar environment. When
possible, results should be compared to those obtained when the database
did not have a performance problem.

Concurrence problems occur only when more than one application is
accessing the database. They may point to an application problem related to
the isolation levels being used. They also may point to an insufficient size of
the lock list memory area. Notice that a snapshot monitor for locks may be
taken. This can provide valuable information to determine the cause of the
problem.

Data elements can be grouped to obtain ratios. Ratios are presented by the
performance monitor or can be calculated by the database administrator. The
manual, System Monitor Guide and Reference, SC09-2956 contains a
description of all the data elements for which information can be collected
and how to calculate ratios using the different elements. An example of these
ratios and their relationship to configuration parameters is shown in Table 13.

Package Cache overflow pckcachesz Insufficient memory
causes error SQLCODE
-973 and catalog table lock
contention.

Deadlocks detected If too many, there is a
concurrence problem.

Lock escalations locklist
maxlocks

Lock list is too small,
applications monopolizing
the lock list.

Dirty page threshold
cleaner triggers

buffpage
chngpgs_thresh

If too many, the buffer pool
is running out of free pages
too often. The buffer pool
size is too small, or
chngpgs_thresh is too low.

Data element Configuration
parameters

Probable causes
304 DB2 UDB V7.1 Performance Guide

Table 13. Ratios and configuration problems

9.4 Data access problems

Data access is the most probable cause of performance problems that can
affect all applications. To avoid these problems, the following steps can be
taken:

• The database administrator should keep the statistics updated and should
periodically bind/rebind for static SQL applications.

• The database administrator should reorganize tables periodically.

To check if reorganizations are required, DB2 provides the REORGCHK utility.
When a performance problem is suspected, and data access is suspected to
be the cause, the database tables should be checked. If reorganizations
show a low clustering ratio for the clustering index of a table, then that table
should be reorganized. If clustered indexes are not being used, a big
performance gain could be obtained by reorganizing tables according to the
most accessed index.

Operating system tools indicating I/O contention may point to problems with
the physical design of the database, such as placement of containers across
physical drives, or containers allocated to table spaces (see Chapter 3, “Data
storage management for performance” on page 31).

Ratio Parameters Probable causes

Buffer Pool Hit Ratio Specified buffer pool size
(CREATE BUFFERPOOL
or ALETER
BUFFERPOOL)

If too low, prefetchers not
working, buffer pool too
small.

Buffer Pool Index Hit Ratio Specified buffer pool size
(CREATE BUFFERPOOL
or ALTER BUFFERPOOL)

If too low, prefetchers not
working, buffer pool too
small.

Catalog cache hit ratio catalogcache_sz If too low, catalog cache
too small.

Percentage of sorts that
overflow

sortheap If significant, sort heap too
small.
Chapter 9. Resolving performance problems 305

9.5 Case study

We now present a case study that uses the Explain facility and the db2batch
tool to analyze a query and resolve its performance problems.

This study is based on the database schema provided by the Transaction
Processing Performance Council (TPC). In this case study, we use two
tables, the LINEITEM table and the ORDERS table. The column names and their
data types are shown in Table 14 and Table 15.

Table 14. Lineitem table

Column names Data types Column length (bytes)

L_ORDERKEY FLOAT 8

L_PARTKEY INTEGER 4

L_SUPPKEY INTEGER 4

L_LINENUMBER INTEGER 4

L_QUANTITY FLOAT 8

L_EXTENDEDPRICE FLOAT 8

L_DISCOUNT FLOAT 8

L_TAX FLOAT 8

L_RETURNFLAG CHAR 1

L_LINESTATUS CHAR 1

L_SHIPDATE DATE 4

L_COMMITDATE DATE 4

L_RECEIPTDATE DATE 4

L_SHIPINSTRUCT CHAR 25

L_SHIPMODE CHAR 10

L_COMMENT VARCHAR 44
306 DB2 UDB V7.1 Performance Guide

Table 15. Order table

The LINEITEM table has 6001215 rows and the ORDERS table has 1500000 rows.

Using the following select statement, we show how we could improve the
performance:

In this case study, we set 10 seconds of the elapsed time as the performance
tuning goal.

To execute the select statement, we used the db2batch tool with PERF_DETAIL

level 5 (see 5.4.5, “The db2batch utility” on page 173) so that we could get a
snapshot for the database manager, database, and this query statement. We
also used the dynamic Explain tool (dynexpln) with the -g option to get the
section information and the access plan graph of the query.

The page size of the table space for the LINEITEM and ORDERS was 8 KB,
therefore, the page size of the buffer pool for this table space was also 8 KB.
This buffer pool was called TPCDATABP in this case study.

The SYSCATSPACE used the buffer pool IBMDEFAULTBP. . The page size of
IBMDEFAULTBP was 4 KB.

Column names Data types Column length (bytes)

O_ORDERKEY FLOAT 8

O_CUSTKEY INTEGER 4

O_ORDERSTATUS CHAR 1

O_TOTALPRICE FLOAT 8

O_ORDERDATE DATE 4

O_ORDERPRIORITY CHAR 15

O_CLERK CHAR 15

O_SHIPPRIORITY INTEGER 4

O_COMMENT CHAR 79

SELECT COUNT(*) FROM lineitem, orders
WHERE l_extendedprice=o_totalprice
AND o_orderdate >= ’01/01/1998’

GROUP BY o_custkey
Chapter 9. Resolving performance problems 307

The database was deactivated/activated between each invocation of the
query to eliminate the benefit of pre-loading the buffer pools so that each test
run was consistent. In a production database, significant performance gains
would be made if the buffer pools already contained the tables’ or indexes’
data pages.

9.5.1 Non-tuned environment
We started the case study with the default settings in the database manager
and database configuration parameters.

The following is the package information from the dynamic Explain output:

Package Name = TETSUR3.DYNEXPLN
Prep Date = 2000/07/07
Prep Time = 12:55:57

Bind Timestamp = 2000-07-07-12.55.57.610196

Isolation Level = Cursor Stability
Blocking = Block Unambiguous Cursors
Query Optimization Class = 5

Partition Parallel = No
Intra-Partition Parallel = No
Function Path = "SYSIBM", "SYSFUN", "TETSUR3"

Note that the partition parallelism is NO, which is the default value.

Here is the access plan graph section information from the Explain output:

RETURN
(1)
|

GRPBY
(2)
|

TBSCAN
(3)
|

Normally you should not use the default values. You should use the
Configure Performance Wizard to obtain recommended values for your
environment instead

Note
308 DB2 UDB V7.1 Performance Guide

SORT
(4)
|

MSJOIN <=This shows the type of Join strategy
(5)
/ \

TBSCAN TBSCAN
(6) (10)
| |
SORT SORT <= Sort before join

(7) (11)
| |

TBSCAN TBSCAN <= Table Scans are performed
(8) (12)
| |

Table: Table:
DB2INST1 DB2INST1
ORDERS LINEITEM

Here is the section information from the Explain output:

Estimated Cost = 968724
Estimated Cardinality = 99996

Access Table Name = DB2INST1.ORDERS ID = 4,9
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible
| Lock Intents
| | Table: Intent Share
| | Row : Next Key Share
| Sargable Predicate(s)
| | #Predicates = 1
| Insert Into Sorted Temp Table ID = t1
| | #Columns = 2
| | #Sort Key Columns = 1
| | | Key 1: O_TOTALPRICE (Ascending)
| | Sortheap Allocation Parameters:
| | | #Rows = 133417
| | | Row Width = 16
| | Piped
Sorted Temp Table Completion ID = t1
Access Temp Table ID = t1
| #Columns = 2
| Relation Scan
| | Prefetch: Eligible
Merge Join
Chapter 9. Resolving performance problems 309

| Access Table Name = DB2INST1.LINEITEM ID = 4,7
| | #Columns = 1
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Temp Table ID = t2
| | | #Columns = 1
| | | #Sort Key Columns = 1
| | | | Key 1: L_EXTENDEDPRICE (Ascending)
| | | Sortheap Allocation Parameters:
| | | | #Rows = 6001215
| | | | Row Width = 12
| | | Piped
| Sorted Temp Table Completion ID = t2
| Access Temp Table ID = t2
| | #Columns = 1
| | Relation Scan
| | | Prefetch: Eligible
Insert Into Sorted Temp Table ID = t3
| #Columns = 2
| #Sort Key Columns = 1
| | Key 1: (Ascending)
| Sortheap Allocation Parameters:
| | #Rows = 99996
| | Row Width = 12
| Piped
| Buffered Partial Aggregation
Access Temp Table ID = t3
| #Columns = 2
| Relation Scan
| | Prefetch: Eligible
| Final Predicate Aggregation
| | Group By
| | Column Function(s)
Final Aggregation Completion
| Group By
| Column Function(s)
Return Data to Application
| #Columns = 1

End of section
310 DB2 UDB V7.1 Performance Guide

In the example of Explain output shown above, you can identify the following:

• Estimated Cost is high (= 968724).

• Relation Scan has been selected for the LINEITEM and ORDERS table.

• Sort operations are performed before joining the ORDERS table and LINEITEM

table, and the sort key is the O_TOTALPRICE column for the ORDERS table, the
L_EXTENDEDPRICE column for the LINEITEM table.

Here is the partial output from the db2batch tool:

Elapsed Time is: 216.471 seconds
:
:
Sort heap allocated = 0
Total sorts = 3
Total sort time (ms) = 130326
Sort overflows = 2
Active sorts = 0
:
:
Bufferpool Name = IBMDEFAULTBP
:
Buffer pool data logical reads = 209
Buffer pool data physical reads = 27
Buffer pool data writes = 3
Buffer pool index logical reads = 45
Buffer pool index physical reads = 7
Buffer pool index writes = 0
Total buffer pool read time (ms) = 18
Total buffer pool write time (ms) = 79
:
:
Bufferpool Name = TPCDATABP
:
Buffer pool data logical reads = 221219
Buffer pool data physical reads = 168149
Buffer pool data writes = 47618
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Buffer pool index writes = 0
Total buffer pool read time (ms) = 83965
Total buffer pool write time (ms) = 13507

From the db2batch output, you should notice the following:
Chapter 9. Resolving performance problems 311

• The elapsed time to execute the query (= 216.471)

• Total sort time in ms (= 130326)

• Sort overflows (= 2)

• Physical reads, both data and index (168149)

9.5.2 Tune configuration parameters
As emphasized throughout this book, you should run the Configure
Performance Wizard to get the recommended values for the database
manager/database configuration parameters.

Here is the list of recommended values we obtained from the Configure
Performance Wizard for our case study environment:

APP_CTL_HEAP_SZ 160
BUFFPAGE 95487
CATALOGCACHE_SZ 326
CHNGPGS_THRESH 40
DBHEAP 1552
LOCKLIST 162
LOGBUFSZ 8
LOGFILSIZ 1000
LOGPRIMARY 3
LOGSECOND 10
MAXAPPLS 40
MAXLOCKS 50
MINCOMMIT 1
NUM_IOCLEANERS 1
NUM_IOSERVERS 5
PCKCACHESZ 160
SOFTMAX 100
SORTHEAP 4570
STMTHEAP 4096
DFT_DEGREE ANY
DFT_PREFETCH_SZ 64
UTIL_HEAP_SZ 63991
SHEAPTHRES 27425
INTRA_PARALLEL ON
MAX_QUERYDEGREE 4
MAXAGENTS 200
NUM_POOLAGENTS -1
NUM_INITAGENTS 0
FCM_NUM_BUFFERS 160
FCM_NUM_RQB 128
ALTER BUFFERPOOL IBMDEFAULTBP SIZE 95487
ALTER BUFFERPOOL TPCDATABP SIZE 48243
312 DB2 UDB V7.1 Performance Guide

After applying the recommended values shown above, we run the dynamic
Explain tool. The following is the access plan graph:

RETURN
(1)
|

GRPBY
(2)
|
LMTQ
(3)
|

TBSCAN
(4)
|
SORT
(5)
|

MSJOIN
(6)
/ \

TBSCAN TBSCAN
(7) (11)
| |
SORT SORT
(8) (12)
| |

TBSCAN TBSCAN
(9) (13)
| |

Table: Table:
DB2INST1 DB2INST1
ORDERS LINEITEM

Here is the section information from the Explain output:

Intra-Partition Parallelism Degree = 4

Estimated Cost = 247174
Estimated Cardinality = 99996

Process Using 4 Subagents
| Access Table Name = DB2INST1.ORDERS ID = 4,9
| | #Columns = 3
| | Parallel Scan
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
Chapter 9. Resolving performance problems 313

| | | Table: Intent Share
| | | Row : Next Key Share
| | Sargable Predicate(s)
| | | #Predicates = 1
| | Insert Into Sorted Shared Temp Table ID = t1
| | | #Columns = 2
| | | #Sort Key Columns = 1
| | | | Key 1: O_TOTALPRICE (Ascending)
| | | Use Partitioned Sort
| | | Sortheap Allocation Parameters:
| | | | #Rows = 133417
| | | | Row Width = 16
| | | Piped
| Sorted Shared Temp Table Completion ID = t1
| Access Temp Table ID = t1
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Merge Join
| | Access Table Name = DB2INST1.LINEITEM ID = 4,7
| | | #Columns = 1
| | | Parallel Scan
| | | Relation Scan
| | | | Prefetch: Eligible
| | | Lock Intents
| | | | Table: Intent Share
| | | | Row : Next Key Share
| | | Insert Into Sorted Shared Temp Table ID = t2
| | | | #Columns = 1
| | | | #Sort Key Columns = 1
| | | | | Key 1: L_EXTENDEDPRICE (Ascending)
| | | | Use Partitioned Sort
| | | | Sortheap Allocation Parameters:
| | | | | #Rows = 6001215
| | | | | Row Width = 12
| | | | Piped
| | Sorted Shared Temp Table Completion ID = t2
| | Access Temp Table ID = t2
| | | #Columns = 1
| | | Relation Scan
| | | | Prefetch: Eligible
| Insert Into Sorted Temp Table ID = t3
| | #Columns = 2
| | #Sort Key Columns = 1
| | | Key 1: (Ascending)
| | Sortheap Allocation Parameters:
| | | #Rows = 99996
314 DB2 UDB V7.1 Performance Guide

| | | Row Width = 12
| | Piped
| | Buffered Partial Aggregation
| Access Temp Table ID = t3
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q1
Access Local Table Queue ID = q1 #Columns = 2
| Output Sorted
| | #Key Columns = 1
| | | Key 1: (Ascending)
Final Aggregation
| Group By
| Column Function(s)
Return Data to Application
| #Columns = 1

End of section

In the Explain output above, you should notice that:

• Intra Parallel has been chosen, the query degree is 4.

• The estimated cost for the access plan has been reduced (=247174).

• Relation Scan (four agents perform this scan in parallel) has been
selected for the LINEITEM and ORDERS table.

• Sort operations are performed before joining the ORDERS table and LINEITEM

table, and the sort key is the O_TOTALPRICE column for the ORDERS table, the
L_EXTENDEDPRICE column for the LINEITEM table.

Here is the partial output from the db2batch:

Elapsed Time is: 133.157 seconds
:
:
Sort heap allocated = 0
Total sorts = 6
Total sort time (ms) = 120255
Sort overflows = 2
Active sorts = 0
:
Bufferpool Name = IBMDEFAULTBP
:
:
Buffer pool data logical reads = 223
Buffer pool data physical reads = 25
Chapter 9. Resolving performance problems 315

Buffer pool data writes = 2
Buffer pool index logical reads = 45
Buffer pool index physical reads = 7
Buffer pool index writes = 0
Total buffer pool read time (ms) = 2
Total buffer pool write time (ms) = 64
:
:
Bufferpool Name = TPCDATABP
:
Buffer pool data logical reads = 229685
Buffer pool data physical reads = 121194
Buffer pool data writes = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Buffer pool index writes = 0
Total buffer pool read time (ms) = 68282
Total buffer pool write time (ms) = 0

As you can see in this output, the performance was improved (from 216.471
sec. to 133.157 sec.); however, actually we saw that excessive activities to
the paging space were occurring during the query was processed. The
following is a vmstats report at that time:

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 268029 110 0 0 0 3 22 0 107 83 23 1 0 97 1
1 0 271706 119 0 2 538 740 13649 0 650 549 520 18 24 36 22
1 1 273093 125 0 36 277 314 368 0 572 540 477 12 21 28 39
1 1 273191 127 0 58 72 78 93 0 726 652 829 30 7 42 21
1 1 274158 0 0 33 168 210 296 0 647 601 687 20 15 37 29
1 1 275092 127 0 101 262 305 450 0 680 416 659 23 6 47 24
2 1 275092 122 0 8 7 9 18 0 825 768 1043 47 3 31 19
2 1 275092 123 0 0 4 5 10 0 829 775 1061 50 3 30 17

Excessive activities to the paging space normally cause I/O bottleneck and
impact on the overall system performance. One of the common causes of this
situation is setting too big buffer pools (or other memory areas).

In our case study, we set the recommended values for each buffer pool size
as well as the database manager and the database configuration parameters.
Probably the Configure Performance Wizard had suggested too big values for
some parameters and therefore this excessive paging activity was occurred.
316 DB2 UDB V7.1 Performance Guide

We checked each recommended values and found that the size of the buffer
pool, IBMDEFAULTBP was 95487 pages. We created TPCDDATABP buffer pool for
the table space which the ORDER and LINEITEM table belonged to and only the
system catalog tables used IBMDEFAULTBP. Apparently 95487 pages was too
big size for the IBMDEFAULTBP. We decided to reduce the size to 5000 and
executed the query again.

The access plan was not changed by this modification though, reducing the
size of IBMDEFAULTBP improved the performance (from 133.157 sec. to 111.762
sec.) as the following db2batch output (partial) shows:

Elapsed Time is: 111.762 seconds
:
:
Sort heap allocated = 0
Total sorts = 6
Total sort time (ms) = 109099
Sort overflows = 2
Active sorts = 0
:
:
Bufferpool Name = IBMDEFAULTBP
:
Buffer pool data logical reads = 221
Buffer pool data physical reads = 25
Buffer pool data writes = 1
Buffer pool index logical reads = 45
Buffer pool index physical reads = 7
Buffer pool index writes = 0
Total buffer pool read time (ms) = 2
Total buffer pool write time (ms) = 23
:
:
Bufferpool Name = TPCDATABP
:
Buffer pool data logical reads = 229689
Buffer pool data physical reads = 121194
Buffer pool data writes = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Buffer pool index writes = 0
Total buffer pool read time (ms) = 52119
Total buffer pool write time (ms) = 0
:

Chapter 9. Resolving performance problems 317

In this db2batch output, you should notice that:

• The total sort time was very big (109099 ms).

• Two of the sort operations needed to use the temporary space (sort
overflows).

• Lots of physical reads occurred (121194)

To deal with them, you can:

• Create indexes to avoid sort operations

• Increase the sort heap size to avoid overflowed sorts

• Increase the buffer pool size to increase the buffer pool hit ratio (reduce
buffer pool data physical reads)

As you can see in the db2batch output, the total sort time was very big
(109099 ms). Thus, we decided take the first option, which is creating new
indexes to avoid heavy sort operations.

9.5.3 Add a new index
The Explain output shows that two sort operations were needed before
joining the ORDERS table and the LINEITEM table so that a merge join can be
performed. As the sort heap allocation parameters in the Explain output
shows, the sort operation for the LINEITEM table is more costly than for the
ORDERS table. To eliminate this sort operation, we created an index called L_EP

on the join key, the L_EXTENDEDPRICE column. We executed the following
statement:

CREATE INDEX L_EP on LINEITEM(L_EXTENDEDPRICE)

After creating indexes, you must not forget to execute a RUNSTATS command.

RUNSTATS ON TABLE db2inst1.orders AND DETAILED INDEXES ALL

Then we executed the dynamic Explain tool again and saw whether the
different access plan would be taken.

Here is the access plan graph:

RETURN
(1)
|

GRPBY
(2)
|
LMTQ
(3)
318 DB2 UDB V7.1 Performance Guide

|
TBSCAN
(4)
|
SORT
(5)
|

NLJOIN <= Nested Loop Join is performed
(6)
/ \

TBSCAN IXSCAN <= Index Scan is performed
(7) (6)
| / \
SORT Index: Table:
(8) DB2INST1 DB2INST1
| L_EP LINEITEM

TBSCAN
(9)
|

Table:
DB2INST1
ORDERS

Here is the section information from the Explain output:

Intra-Partition Parallelism Degree = 4

Estimated Cost = 55598
Estimated Cardinality = 99996

Process Using 4 Subagents
| Access Table Name = DB2INST1.ORDERS ID = 4,9
| | #Columns = 3
| | Parallel Scan
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Sargable Predicate(s)
| | | #Predicates = 1
| | Insert Into Sorted Temp Table ID = t1
| | | #Columns = 2
| | | #Sort Key Columns = 1
| | | | Key 1: O_TOTALPRICE (Ascending)
| | | Sortheap Allocation Parameters:
| | | | #Rows = 133417
Chapter 9. Resolving performance problems 319

| | | | Row Width = 16
| | | Piped
| Sorted Temp Table Completion ID = t1
| Access Temp Table ID = t1
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Nested Loop Join
| | Access Table Name = DB2INST1.LINEITEM ID = 4,7
| | | #Columns = 1
| | | Index Scan: Name = DB2INST1.L_EP ID = 1
| | | | Index Columns:
| | | | | 1: L_EXTENDEDPRICE (Ascending)
| | | | #Key Columns = 1
| | | | | Start Key: Inclusive Value
| | | | | | 1: ?
| | | | | Stop Key: Inclusive Value
| | | | | | 1: ?
| | | | Index-Only Access
| | | | Index Prefetch: Eligible 5238
| | | | | Insert Into Sorted Shared Temp Table ID = t2
| | | | | | #Columns = 2
| | | | | | #Sort Key Columns = 1
| | | | | | | Key 1: (Ascending)
| | | | | | Use Round-Robin Sort
| | | | | | Sortheap Allocation Parameters:
| | | | | | | #Rows = 99996
| | | | | | | Row Width = 12
| | | | | | Piped
| | | | | | Buffered Partial Aggregation
| | | Lock Intents
| | | | Table: Intent Share
| | | | Row : Next Key Share
| Sorted Shared Temp Table Completion ID = t2
| Access Temp Table ID = t2
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q1
Access Local Table Queue ID = q1 #Columns = 2
| Output Sorted
| | #Key Columns = 1
| | | Key 1: (Ascending)
Final Aggregation
| Group By
| Column Function(s)
Return Data to Application
320 DB2 UDB V7.1 Performance Guide

| #Columns = 1

End of section

In this Explain output, you should notice that:

• The estimated cost was reduced (from 247174 to 55598).

• An index scan using the new index was chosen as the access method to
the LINEITEM table.

• The sort operation for the LINEITEM table was no longer required.

• Nested loop join was selected.

• A table scan was used for the ORDERS table.

Here is the output (partial) from the db2batch:

Elapsed Time is: 15.217 seconds
:
:
Sort heap allocated = 0
Total sorts = 4
Total sort time (ms) = 2106
Sort overflows = 0
Active sorts = 0
:
:
Bufferpool Name = IBMDEFAULTBP
:
Buffer pool data logical reads = 190
Buffer pool data physical reads = 24
Buffer pool data writes = 1
Buffer pool index logical reads = 45
Buffer pool index physical reads = 7
Buffer pool index writes = 0
Total buffer pool read time (ms) = 2
Total buffer pool write time (ms) = 22
:
:
Bufferpool Name = TPCDATABP
:
Buffer pool data logical reads = 32915
Buffer pool data physical reads = 21840
Buffer pool data writes = 0
Buffer pool index logical reads = 400971
Buffer pool index physical reads = 5256
Buffer pool index writes = 0
Total buffer pool read time (ms) = 13793
Chapter 9. Resolving performance problems 321

Total buffer pool write time (ms) = 0

The performance was improved significantly (from 111.762 sec. to 15.217
sec.); however, it did not meet our goal yet. The goal of this performance
tuning was 10 seconds of the elapsed time.

From the Explain and db2batch tools output, you can see that:

• Many buffer pool physical reads were required

• Entire rows of the ORDERS table were scanned

To deal with such problems, you can:

• Increase the buffer pool size to reduce the buffer pool physical reads

• Create an index on the ORDERS table so that an index scan can be chosen

We decided to take the first option.

9.5.4 Increase buffer pool size
We increased the size of the buffer pool TPCDATABP from 48243 pages (that
was what the Configure Performance Wizard had recommended) to 90000
pages, and execute the query again.

Here is the access plan graph:

RETURN
(1)
|

GRPBY
(2)
|
LMTQ
(3)
|

TBSCAN
(4)
|
SORT
(5)
|

NLJOIN
(6)
/ \

TBSCAN IXSCAN
(7) (6)
| / \
322 DB2 UDB V7.1 Performance Guide

SORT Index: Table:
(8) DB2INST1 DB2INST1
| L_EP LINEITEM

TBSCAN
(9)
|

Table:
DB2INST1
ORDERS

Here is the section information from the Explain output:

Intra-Partition Parallelism Degree = 4

Estimated Cost = 55598
Estimated Cardinality = 99996

Process Using 4 Subagents
| Access Table Name = DB2INST1.ORDERS ID = 4,9
| | #Columns = 3
| | Parallel Scan
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Sargable Predicate(s)
| | | #Predicates = 1
| | Insert Into Sorted Temp Table ID = t1
| | | #Columns = 2
| | | #Sort Key Columns = 1
| | | | Key 1: O_TOTALPRICE (Ascending)
| | | Sortheap Allocation Parameters:
| | | | #Rows = 133417
| | | | Row Width = 16
| | | Piped
| Sorted Temp Table Completion ID = t1
| Access Temp Table ID = t1
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Nested Loop Join
| | Access Table Name = DB2INST1.LINEITEM ID = 4,7
| | | #Columns = 1
| | | Index Scan: Name = DB2INST1.L_EP ID = 1
| | | | Index Columns:
| | | | | 1: L_EXTENDEDPRICE (Ascending)
Chapter 9. Resolving performance problems 323

| | | | #Key Columns = 1
| | | | | Start Key: Inclusive Value
| | | | | | 1: ?
| | | | | Stop Key: Inclusive Value
| | | | | | 1: ?
| | | | Index-Only Access
| | | | Index Prefetch: Eligible 5238
| | | | | Insert Into Sorted Shared Temp Table ID = t2
| | | | | | #Columns = 2
| | | | | | #Sort Key Columns = 1
| | | | | | | Key 1: (Ascending)
| | | | | | Use Round-Robin Sort
| | | | | | Sortheap Allocation Parameters:
| | | | | | | #Rows = 99996
| | | | | | | Row Width = 12
| | | | | | Piped
| | | | | | Buffered Partial Aggregation
| | | Lock Intents
| | | | Table: Intent Share
| | | | Row : Next Key Share
| Sorted Shared Temp Table Completion ID = t2
| Access Temp Table ID = t2
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q1
Access Local Table Queue ID = q1 #Columns = 2
| Output Sorted
| | #Key Columns = 1
| | | Key 1: (Ascending)
Final Aggregation
| Group By
| Column Function(s)
Return Data to Application
| #Columns = 1

End of section

As you can see above, the access plan was not changed by increasing the
buffer pool size.

Here is the db2batch output (partial):
324 DB2 UDB V7.1 Performance Guide

Elapsed Time is: 15.232 seconds
:
:
Sort heap allocated = 0
Total sorts = 4
Total sort time (ms) = 2158
Sort overflows = 0
:
:
Bufferpool Name = IBMDEFAULTBP
:
Buffer pool data logical reads = 203
Buffer pool data physical reads = 24
Buffer pool data writes = 4
Buffer pool index logical reads = 45
Buffer pool index physical reads = 7
Buffer pool index writes = 0
Total buffer pool read time (ms) = 2
Total buffer pool write time (ms) = 102
:
:
Bufferpool Name = TCPDATABP
:
Buffer pool data logical reads = 32915
Buffer pool data physical reads = 21840
Buffer pool data writes = 0
Buffer pool index logical reads = 400971
Buffer pool index physical reads = 5256
Buffer pool index writes = 0
Total buffer pool read time (ms) = 13766
Total buffer pool write time (ms) = 0

In the db2batch output, you can see that the buffer pool data physical reads
were not decreased and the performance was not improved.

We also tested the same query using the db2batch tool after increasing the
size of the buffer pool TCPDATABP from 90000 pages to 100000 pages;
however, that resulted in worse performance due to an excessive activity on
the paging space.

In this case study, we executed the query after deactivating/activating the
database so that the buffer pool could not have any cached data before
running the query. That is why you see many buffer pool data physical reads
in the db2batch output. When we executed the query without deactivating the
database, the number of the buffer pool data physical reads was actually
zero.
Chapter 9. Resolving performance problems 325

9.5.5 Add a new index
Increasing the buffer pool size did not help very much in this case study, so
then we took the other approach. As you can see in the Explain output, a
table scan and a sort operation for the ORDERS table was still performed.

In the query we used in this case study, you can see a predicate "WHERE

O_ORDERDATE >= ’01/01’98’". We created an index called O_OD on the
O_ORDERDATE column to satisfy the predicate:

CREATE INDEX O_OD on ORDERS (O_ORDERDATE)

You should not forget to execute a RUNSTATS command after creating new
indexes.

RUNSTATS ON TABLE db2inst1.orders AND DETAILED INDEXES ALL

Here is the changed access plan graph:

RETURN
(1)
|

GRPBY
(2)
|
LMTQ
(3)
|

TBSCAN
(4)
|
SORT
(5)
|

NLJOIN <= Nested Loop Join is performed
(6)
/ \

TBSCAN IXSCAN <= Index Scan is performed for the LINEITEM table

(7) (6)
| / \
SORT Index: Table:
(8) DB2INST1 DB2INST1
| L_EP LINEITEM

RIDSCN
(10)
|
SORT
(11)
|

326 DB2 UDB V7.1 Performance Guide

IXSCAN <= Index Scan is performed for the ORDERS table
(12)
/ \

Index: Table:
DB2INST1 DB2INST1
O_OD ORDERS

Here is the section information from the Explain output:

Intra-Partition Parallelism Degree = 4

Estimated Cost = 52211
Estimated Cardinality = 104448

Process Using 4 Subagents
| Access Table Name = DB2INST1.ORDERS ID = 4,9
| | #Columns = 1
| | Parallel Scan
| | Index Scan: Name = DB2INST1.O_OD ID = 1
| | | Index Columns:
| | | | 1: O_ORDERDATE (Ascending)
| | | #Key Columns = 1
| | | | Start Key: Inclusive Value
| | | | | 1: 1998-01-01
| | | | Stop Key: End of Index
| | | Index-Only Access
| | | Index Prefetch: Eligible 88
| | | | Insert Into Sorted Shared Temp Table ID = t1
| | | | | #Columns = 1
| | | | | #Sort Key Columns = 1
| | | | | | Key 1: (Ascending)
| | | | | Use Partitioned Sort
| | | | | Sortheap Allocation Parameters:
| | | | | | #Rows = 133417
| | | | | | Row Width = 12
| | | | | Piped
| | Isolation Level: Uncommitted Read
| | Lock Intents
| | | Table: Intent None
| | | Row : None
| Sorted Shared Temp Table Completion ID = t1
| List Prefetch RID Preparation
| Insert Into Sorted Temp Table ID = t2
| | #Columns = 2
| | #Sort Key Columns = 1
| | | Key 1: O_TOTALPRICE (Ascending)
| | Sortheap Allocation Parameters:
Chapter 9. Resolving performance problems 327

| | | #Rows = 133417
| | | Row Width = 16
| | Piped
| Access Temp Table ID = t2
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Nested Loop Join
| | Access Table Name = DB2INST1.LINEITEM ID = 4,7
| | | #Columns = 1
| | | Index Scan: Name = DB2INST1.L_EP ID = 1
| | | | Index Columns:
| | | | | 1: L_EXTENDEDPRICE (Ascending)
| | | | #Key Columns = 1
| | | | | Start Key: Inclusive Value
| | | | | | 1: ?
| | | | | Stop Key: Inclusive Value
| | | | | | 1: ?
| | | | Index-Only Access
| | | | Index Prefetch: Eligible 5238
| | | | | Insert Into Sorted Temp Table ID = t3
| | | | | | #Columns = 2
| | | | | | #Sort Key Columns = 1
| | | | | | | Key 1: (Ascending)
| | | | | | Sortheap Allocation Parameters:
| | | | | | | #Rows = 104448
| | | | | | | Row Width = 12
| | | | | | Piped
| | | | | | Buffered Partial Aggregation
| | | Lock Intents
| | | | Table: Intent Share
| | | | Row : Next Key Share
| Sorted Temp Table Completion ID = t3
| Access Temp Table ID = t3
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q1
Access Local Table Queue ID = q1 #Columns = 2
| Output Sorted
| | #Key Columns = 1
| | | Key 1: (Ascending)
Final Aggregation
| Group By
| Column Function(s)
Return Data to Application
| #Columns = 1
328 DB2 UDB V7.1 Performance Guide

End of section

Here is the db2batch output:

Elapsed Time is: 14.810 seconds
:
:
Sort heap allocated = 0
Total sorts = 6
Total sort time (ms) = 3924
Sort overflows = 0
:
:
Bufferpool Name = IBMDEFAULTBP
:
Buffer pool data logical reads = 232
Buffer pool data physical reads = 25
Buffer pool data writes = 2
Buffer pool index logical reads = 50
Buffer pool index physical reads = 7
Buffer pool index writes = 1
Total buffer pool read time (ms) = 2
Total buffer pool write time (ms) = 58
:
:
Bufferpool Name = TPCDATABP
:
Buffer pool data logical reads = 22509
Buffer pool data physical reads = 21793
Buffer pool data writes = 0
Buffer pool index logical reads = 401824
Buffer pool index physical reads = 5350
Buffer pool index writes = 0
Total buffer pool read time (ms) = 33884
Total buffer pool write time (ms) = 0

In the Explain output, you should notice:

• The estimated cost was slightly reduced (from 55598 to 52211).

• The index on the O_ORDERDATE column was used to access the ORDERS table.

• Before retrieving rows from the ORDERS table, only the row identifiers (RIDs)
of the rows which conform the predicate were retrieved from the index and
sorted, and then the rows were retrieved using the sorted RIDs.

In the db2batch output, you can see that the performance was not improved
very much (from 15.232 sec. to 14.810 sec.).
Chapter 9. Resolving performance problems 329

Here you should consider why the RIDs were taken from the index and sorted
before the actual table access is performed. This is probably because of the
low cluster ratio of the index. When the cluster ratio is low, the index keys are
not in sequential order, but are distributed throughout the table. Therefore,
accessing the table in the order of such an index’s keys requires more disk
I/Os than accessing the table using a high cluster ratio index. Instead of
accessing the ORDERS table in the order of the index keys, DB2 decided to get
and sort the RIDs before retrieving rows so that the disk I/Os could be
minimized.

To increase the cluster ratio, you can reorganize the table using a REORG TABLE

command.

9.5.6 Reorganize table
To check the cluster ratio, we executed the following REORGCHK command:

REORGCHK CURRENT STATISTICS ON TABLE db2inst1.orders

Here is the output.

Table statistics:

F1: 100 * OVERFLOW / CARD < 5
F2: 100 * TSIZE / ((FPAGES-1) * (TABLEPAGESIZE-76)) > 70
F3: 100 * NPAGES / FPAGES > 80

CREATOR NAME CARD OV NP FP TSIZE F1 F2 F3 REORG
--
DB2INST1 ORDERS 1500000 0 21835 21836 1.76e+08 0 99 99 ---
--

Index statistics:

F4: CLUSTERRATIO or normalized CLUSTERFACTOR > 80
F5: 100 * (KEYS * (ISIZE+8) + (CARD-KEYS) * 4) / (NLEAF * INDEXPAGESIZE) > 50
F6: (100-PCTFREE) * (INDEXPAGESIZE-96) / (ISIZE+12) ** (NLEVELS-2) *
(INDEXPAGESIZE-96) / (KEYS * (ISIZE+8) + (CARD-KEYS) * 4) < 100

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG
--
Table: DB2INST1.ORDERS
DB2INST1 O_OD 2e+06 992 3 4 2406 2 74 61 *--
--

CLUSTERRATIO or normalized CLUSTERFACTOR (F4) will indicate REORG is necessary
for indexes that are not in the same sequence as the base table. When multiple
indexes are defined on a table, one or more indexes may be flagged as needing
REORG. Specify the most important index for REORG sequencing.

You can see that the cluster ratio (F4) of O_OD is very low (2%). To increase
the cluster ratio, we reorganized the ORDERS table using the following
command:

REORG TABLE db2inst1.orders INDEX db2inst1.o_od
330 DB2 UDB V7.1 Performance Guide

You should not forget to execute a RUNSTATS command after reorganizing a
table.

RUNSTATS ON TABLE db2inst1.orders AND DETAILED INDEXES ALL

The access path was changed as in the following graph:

RETURN
(1)
|

GRPBY
(2)
|
LMTQ
(3)
|

TBSCAN
(4)
|
SORT
(5)
|

NLJOIN
(6)
/ \

TBSCAN IXSCAN
(7) (6)
| / \
SORT Index: Table:
(8) DB2INST1 DB2INST1
| L_EP LINEITEM

FETCH
(9)
/ \

IXSCAN Table:
(9) DB2INST1
/ \ ORDERS

Index: Table:
DB2INST1 DB2INST1
O_OD ORDERS

Here is the section information from the Explain output:

Intra-Partition Parallelism Degree = 4

Estimated Cost = 19531
Estimated Cardinality = 104448
Chapter 9. Resolving performance problems 331

Process Using 4 Subagents
| Access Table Name = DB2INST1.ORDERS ID = 4,9
| | #Columns = 3
| | Parallel Scan
| | Index Scan: Name = DB2INST1.O_OD ID = 1
| | | Index Columns:
| | | | 1: O_ORDERDATE (Ascending)
| | | #Key Columns = 1
| | | | Start Key: Inclusive Value
| | | | | 1: 1998-01-01
| | | | Stop Key: End of Index
| | | Data Prefetch: Eligible 1942
| | | Index Prefetch: Eligible 1942
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Temp Table ID = t1
| | | #Columns = 2
| | | #Sort Key Columns = 1
| | | | Key 1: O_TOTALPRICE (Ascending)
| | | Sortheap Allocation Parameters:
| | | | #Rows = 133417
| | | | Row Width = 16
| | | Piped
| Sorted Temp Table Completion ID = t1
| Access Temp Table ID = t1
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Nested Loop Join
| | Access Table Name = DB2INST1.LINEITEM ID = 4,7
| | | #Columns = 1
| | | Index Scan: Name = DB2INST1.L_EP ID = 1
| | | | Index Columns:
| | | | | 1: L_EXTENDEDPRICE (Ascending)
| | | | #Key Columns = 1
| | | | | Start Key: Inclusive Value
| | | | | | 1: ?
| | | | | Stop Key: Inclusive Value
| | | | | | 1: ?
| | | | Index-Only Access
| | | | Index Prefetch: Eligible 5238
| | | | | Insert Into Sorted Temp Table ID = t2
| | | | | | #Columns = 2
| | | | | | #Sort Key Columns = 1
| | | | | | | Key 1: (Ascending)
| | | | | | Sortheap Allocation Parameters:
332 DB2 UDB V7.1 Performance Guide

| | | | | | | #Rows = 104448
| | | | | | | Row Width = 12
| | | | | | Piped
| | | | | | Buffered Partial Aggregation
| | | Lock Intents
| | | | Table: Intent Share
| | | | Row : Next Key Share
| Sorted Temp Table Completion ID = t2
| Access Temp Table ID = t2
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q1
Access Local Table Queue ID = q1 #Columns = 2
| Output Sorted
| | #Key Columns = 1
| | | Key 1: (Ascending)
Final Aggregation
| Group By
| Column Function(s)
Return Data to Application
| #Columns = 1

End of section

In the Explain output, you should notice that:

• The estimated cost was reduced (from 52211 to 19531).

• The RID sort for the orders table no longer exists.

Here is the output from the db2batch:

Elapsed Time is: 6.434 seconds
:
:
Sort heap allocated = 0
Total sorts = 4
Total sort time (ms) = 2111
Sort overflows = 0
Active sorts = 0
:
:
Bufferpool Name = IBMDEFAULTBP
:
Buffer pool data logical reads = 214
Buffer pool data physical reads = 24
Buffer pool data writes = 3
Chapter 9. Resolving performance problems 333

Buffer pool index logical reads = 47
Buffer pool index physical reads = 8
Buffer pool index writes = 0
Total buffer pool read time (ms) = 2
Total buffer pool write time (ms) = 68
:
:
Bufferpool Name = TPCDATABP
:
Buffer pool data logical reads = 2317
Buffer pool data physical reads = 1953
Buffer pool data writes = 0
Buffer pool index logical reads = 401336
Buffer pool index physical reads = 5350
Buffer pool index writes = 0
Total buffer pool read time (ms) = 5259
Total buffer pool write time (ms) = 0

As the db2batch output shows, the performance goal we had set was finally
achieved and we decided to stop tuning the database.

Although we stopped the performance tuning, we could perform further
tuning. For example, if we had created an new index whose index keys are
O_ORDERDATE, O_TOTALPRICE, and O_CUSTKEY, then the necessary data from the
ORDERS table would have been able to be taken from the index only. This could
improve the performance further.

Although adding this index could improve the performance, we should
mention the overhead of adding the index. By creating indexes, whenever
new rows are inserted into the base tables, the new index entries will need to
be added. In general, this is something to be careful about. In our case study,
this extra overhead for the indexes on the L_EXTENDEDPRICE columns and the
one on the O_ORDERDATE columns could be a reasonable trade-off for the
improvement in query performance. Creating an index on the O_ORDERDATE,
O_TOTALPRICE, and O_CUSTKEY columns could also be an option. However, in
real-life situations, the overhead which can be caused by these indexes may
be bigger than is justified by the performance improvement, depending on
your environment.
334 DB2 UDB V7.1 Performance Guide

Appendix A. Sample scripts

We have written some useful shell scripts to maintain monitored data. These
scripts call the Operating System commands or DB2 UDB Monitoring Tools,
format the outputs, and save them into the directory structure that we
discussed in Chapter 4, “Database design” on page 85.

You can use these sample shell scripts for your environment, or modify them
for your own purpose. The source of each sample script can be found on the
companion diskette.

A.1 Executing db2look

The db2look.ksh script can be used to execute db2look with default
parameters and place the output in a states subdirectory under your home
directory. A sample output is included in Chapter 4, “Database design” on
page 85.

Here is the syntax:

db2look.ksh -c "comment" -d dbname [-p "params"] [-o N] [-v] [-b]
-c: Comment placed on first line of Summary output file (required)
-d: Database name (required)
-p: db2look parameters (default="-m -l -a -x -e -f")
-o: Save output in dir N under $RESULTS

(0=Current dir,default; -1=Not Valid)
-v: Verbose (default is NOT to display db2look script)
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Value for -d is part of output filename.
© Copyright IBM Corp. 2000 335

Here is the script:

#!/bin/ksh
db2look.ksh
Raanon Reutlinger, IBM Israel, May 2000

display_syntax()
{

echo "\
SYNTAX: `basename $0` -c \"comment\" -d dbname [-p \"params\"] [-o N] [-v] [-b]
Execute db2look tool to extract database definitions into an executable script
which can be used to restore the definitions.

-c: Comment placed on first line of Summary output file (required)
-d: Database name (required)
-p: db2look parameters (default=\"${DB2LOOK_PARAMS}\")
-o: Save output in dir N under \$RESULTS

(0=Current dir,default; -1=Not Valid)
-v: Verbose (default is NOT to display db2look script)
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Value for -d is part of output filename.

"
}

Constants

RESULTS=~/states
RESULTS_FILE=`basename $0 .ksh`
RES_EXT=".sql"

Defaults

QUIET=1
DB_NAME=""
RESULTS_DIR=0# 0 defaults to current dir
SAVE_OLD_RESULTS=1
PARSE_ERROR=""
PARAMS=$*

DB2LOOK_PARAMS="-m -l -a -x -e -f"

Parse parameters

while ["$1" != ""]
do

case "$1" in
"-c") shift; COMMENT=$1; shift;;
"-d") shift; DB_NAME=$1; shift;;
"-o") shift; RESULTS_DIR=$1; shift;;
"-v") shift; QUIET=0;;
"-b") shift; SAVE_OLD_RESULTS=0;;
*) shift; PARSE_ERROR="Invalid Param";;
esac

done

Verify parameters

["$COMMENT" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Comment is required"

["$DB_NAME" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Database name is required"
336 DB2 UDB V7.1 Performance Tuning Guide

[$RESULTS_DIR -ge 0] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -o param"

if ["$PARSE_ERROR" != ""]
then

echo ""
echo $PARSE_ERROR
echo ""
display_syntax
exit

fi

DB_NAME=`echo $DB_NAME | tr [a-z] [A-Z]`
RES_EXT="_${DB_NAME}${RES_EXT}"

if [$RESULTS_DIR -gt 0]
then

RES_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${RES_EXT}
RES_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${RES_EXT}.$$

else
RES_OUT=${RESULTS_FILE}${RES_EXT}

fi

if [$RESULTS_DIR -gt 0]
then

mkdir $RESULTS 2>/dev/null
mkdir $RESULTS/$RESULTS_DIR 2>/dev/null
if [$SAVE_OLD_RESULTS -eq 1]
then

mkdir $RESULTS/$RESULTS_DIR/bak2>/dev/null
cp $RES_OUT $RES_BAK 2>/dev/null && echo "[Created: $RES_BAK]"

fi
fi

BEGIN

[$QUIET -eq 1] && Q_OUTPUT=">> $RES_OUT" || Q_OUTPUT="| tee -a $RES_OUT"
rm $RES_OUT 2>/dev/null

echo "[Creating: $RES_OUT]"

eval echo "-- $COMMENT"$Q_OUTPUT
eval echo "-- --"$Q_OUTPUT
eval echo "-- Invocation: $0 $PARAMS"$Q_OUTPUT
eval echo "-- `date`"$Q_OUTPUT
eval echo "-- " $Q_OUTPUT

eval echo "-- db2look -d $DB_NAME $DB2LOOK_PARAMS"$Q_OUTPUT
eval echo "-- " $Q_OUTPUT
eval db2look -d $DB_NAME $DB2LOOK_PARAMS$Q_OUTPUT
Appendix A. Sample scripts 337

A.2 Executing GET DBM CFG / GET DB CFG

This script executes a GET DBM CFG or GET DB CFG command and saves the
output, at the same time generating a script file which can return all of the
parameters to their current value. The generated script can be executed by
using the db2 -tvf command. In this way, if you experiment with a number of
different tunable parameters (not recommended in general, anyway), then
you can always return to the values (state) which were saved in this script.

Here is the syntax:

Here is the script:

#!/bin/ksh
upd_cfg.ksh
Raanon Reutlinger, IBM Israel, May 2000

display_syntax()
{

echo "\
SYNTAX: `basename $0` -c \"comment\" [-d dbname] [-o N] [-v] [-r] [-b]
Create an SQL script which can be used to restore the current settings of the
DBM CFG or DB CFG.

-c: Comment placed on first line of Summary output file (required)
-d: Database name, indicates to use DB CFG (default is DBM CFG)
-o: Save output in dir N under \$RESULTS

(0=Current dir,default; -1=Not Valid)
-v: Verbose (default is NOT to display generated SQL script)
-r: Don't get DB/M CFG, reuse existing output file
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Output of DB/M CFG also saved in -o directory.
Value for -d is part of output filename and generated script filename.

"
}

Constants

SYNTAX: upd_cfg.ksh -c "comment" [-d dbname] [-o N] [-v] [-r] [-b]
Create an SQL script which can be used to restore the current settings of the
DBM CFG or DB CFG.

-c: Comment placed on first line of Summary output file (required)
-d: Database name, indicates to use DB CFG (default is DBM CFG)
-o: Save output in dir N under $RESULTS

(0=Current dir,default; -1=Not Valid)
-v: Verbose (default is NOT to display generated SQL script)
-r: Don't get DB/M CFG, reuse existing output file
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Output of DB/M CFG also saved in -o directory.
Value for -d is part of output filename and generated script filename.
338 DB2 UDB V7.1 Performance Tuning Guide

RESULTS=~/states
RESULTS_FILE="dbm_cfg"
RES_EXT=".out"
SUM_EXT=".sql"
AWKSCRIPT="`dirname $0`/`basename $0 .ksh`.awk"

Defaults

QUIET=1
DB_NAME=""
RESULTS_DIR=0# 0 defaults to current dir
REUSE_OUT=0
SAVE_OLD_RESULTS=1
PARSE_ERROR=""
PARAMS=$*

Parse parameters

while ["$1" != ""]
do

case "$1" in
"-c") shift; COMMENT=$1; shift;;
"-d") shift; DB_NAME=$1; shift;;
"-o") shift; RESULTS_DIR=$1; shift;;
"-v") shift; QUIET=0;;
"-r") shift; REUSE_OUT=1;;
"-b") shift; SAVE_OLD_RESULTS=0;;
*) shift; PARSE_ERROR="Invalid Param";;
esac

done

Verify parameters

["$COMMENT" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Comment is required"

[$RESULTS_DIR -ge 0] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -o param"

if ["$PARSE_ERROR" != ""]
then

echo ""
echo $PARSE_ERROR
echo ""
display_syntax
exit

fi

if ["$DB_NAME" != ""]
then

DB_NAME=`echo $DB_NAME | tr [a-z] [A-Z]`
RESULTS_FILE="db_cfg"
RES_EXT="_${DB_NAME}${RES_EXT}"
SUM_EXT="_${DB_NAME}${SUM_EXT}"

fi

if [$RESULTS_DIR -gt 0]
then

RES_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${SUM_EXT}
RES_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${RES_EXT}.$$
SUM_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${SUM_EXT}.$$

else
Appendix A. Sample scripts 339

RES_OUT=${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS_FILE}${SUM_EXT}

fi

if [$REUSE_OUT -eq 1 -a ! -f $RES_OUT]
then

echo "Can't reuse $RES_OUT - Missing"
exit

fi

if [$RESULTS_DIR -gt 0]
then

mkdir $RESULTS 2>/dev/null
mkdir $RESULTS/$RESULTS_DIR 2>/dev/null
if [$SAVE_OLD_RESULTS -eq 1]
then

mkdir $RESULTS/$RESULTS_DIR/bak2>/dev/null
[$REUSE_OUT -eq 0] && \
cp $RES_OUT $RES_BAK 2>/dev/null && echo "[Created: $RES_BAK]"
cp $SUM_OUT $SUM_BAK 2>/dev/null && echo "[Created: $SUM_BAK]"

fi
fi

BEGIN

[$QUIET -eq 1] && Q_OUTPUT=">> $SUM_OUT" || Q_OUTPUT="| tee -a $SUM_OUT"
rm $SUM_OUT 2>/dev/null

echo "[Creating: $SUM_OUT]"

eval echo "-- $COMMENT"$Q_OUTPUT
eval echo "-- --"$Q_OUTPUT
eval echo "-- Invocation: $0 $PARAMS"$Q_OUTPUT
eval echo "-- `date`"$Q_OUTPUT
eval echo "-- " $Q_OUTPUT

if [$REUSE_OUT -eq 0]
then

echo "[Creating: $RES_OUT]"
echo ""
if ["$DB_NAME" = ""]
then

eval echo "-- db2 get dbm cfg"$Q_OUTPUT
db2 get dbm cfg > $RES_OUT

else
eval echo "-- db2 get db cfg for $DB_NAME" $Q_OUTPUT
db2 get db cfg for $DB_NAME> $RES_OUT

fi
else

echo "[Reusing: $RES_OUT]"
fi

eval awk -f $AWKSCRIPT $RES_OUT $Q_OUTPUT

The upd_cfg.ksh script uses upd_cfg.awk file whose source is as follows:

run: db2 get dbm cfg | awk -f upd_cfg.awk > upd_dbm.sql
run: db2 get db cfg for xx | awk -f upd_cfg.awk > upd_db_xx.sql

BEGIN{once = 0 ; set_NEWLOGPATH=0 }

/Database Manager Configuration/ && (once == 0){
print "UPDATE DBM CFG USING";
340 DB2 UDB V7.1 Performance Tuning Guide

once = 1;
FS=" = ";

}

/Database Configuration for Database/ && (once == 0){
print "UPDATE DB CFG FOR " $NF " USING";
once = 1;
FS=" = ";

}

{ # Print the original line as a comment
print "--" $0;

}

Look for configurable parameters in parenthases
/\([A-Z]+[A-Z_0-9]*\)/{

match($1, /\([A-Z]+[A-Z_0-9]*\)/);

pull out parameter name and current value
parm = substr($1, RSTART+1, RLENGTH-2);
val = $2;

If the value is blank, set to empty string
if (val ~ /^ *$/) {

Exception made for NEWLOGPATH, since empty string forces
value of a default path
if (parm == "NEWLOGPATH") {

set_NEWLOGPATH=1;
next; # Skip the rest, don't print anything, see below

} else {
val = "''";

}
} else {

Remove part of value btwn paren's. Force recalc (-1) when:
1) value contains "(caluculated)"; 2) value starts with "MAX";
3) entire value was between paren's
gsub(/\(.*\)/, "", $2);
if ((val ~ /\(calculated\)/) || (val ~ /^MAX/) ||

($2 ~ /^ *$/)) {
val = "-1";

} else {
val = $2;

}
}

Print the uncommented line
printf "%57.57s %s\n", parm, val;

}

Exception for NEWLOGPATH: Set it to the current log path
/Path to log files/ && set_NEWLOGPATH{

printf "%57.57s %s\n", "NEWLOGPATH", $2;
}

END{ print ";" }
Appendix A. Sample scripts 341

A.3 Display statements in the dynamic SQL cache

The sample script sqlcache.ksh displays the SQL statements and selected
statistics currently in the dynamic SQL cache.

Here is the syntax:

The source is as follows:

#!/bin/ksh
sqlcache.ksh
Raanon Reutlinger, IBM Israel, May 2000

display_syntax()
{

echo "\
SYNTAX: `basename $0` -c \"comment\" -d dbname [-o N] [-f] [-s N] [-sql]

[-t] [-w] [-q] [-r] [-b]
Summerize the Statement statistics captured by the Dynamic SQL Snapshot.

-c: Comment placed on first line of Summary output file (required)
-d: Database name (required)
-o: Save output in dir N under \$RESULTS

(0=Current dir; -1=Not Saved,default)
-f: Save each SQL stmt to a different file in the \$QUERIES dir
-s: Display N characters of SQL stmt (-1=all, default)
-sql: Only display SQL statements, without statistics
-t: DONT display Timing stats
-w: DONT display Row Count stats
-q: Quiet (default is to display output)
-r: Don't get snapshot, reuse existing snapshot output file
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Value for -d is part of snapshot output filename.
Values for -d, -s, -f and -sql are part of Summary output filename.

sqlcache.ksh -c "comment" -d dbname [-o N] [-f] [-s N] [-sql]
[-t] [-w] [-q] [-r] [-b]

-c: Comment placed on first line of Summary output file (required)
-d: Database name (required)
-o: Save output in dir N under $RESULTS

(0=Current dir; -1=Not Saved,default)
-f: Save each SQL stmt to a different file in the $QUERIES dir
-s: Display N characters of SQL stmt (-1=all, default)
-sql: Only display SQL statements, without statistics
-t: DONT display Timing stats
-w: DONT display Row Count stats
-q: Quiet (default is to display output)
-r: Don't get snapshot, reuse existing snapshot output file
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Value for -d is part of snapshot output filename.
Values for -d, -s, -f and -sql are part of Summary output filename.
Timing and Row Count statistics won't be shown if "Not Collected".
In most cases, best viewed in 80 or 132 column window.
342 DB2 UDB V7.1 Performance Tuning Guide

Timing and Row Count statistics won't be shown if \"Not Collected\".
In most cases, best viewed in 80 or 132 column window.

"
}

Constants

QUERIES=~/queries
RESULTS=~/results
RESULTS_FILE="`basename $0 .ksh`"
RES_EXT=".out"
SUM_EXT=".sum"
AWKSCRIPT="`dirname $0`/`basename $0 .ksh`.awk"

Defaults

QUIET=0
DISPLAY_SQL=-1
SAVE_SQL=0
SQL_ONLY=0
RESULTS_DIR=-1# -1 defaults to not saved
REUSE_OUT=0
SAVE_OLD_RESULTS=1
PARSE_ERROR=""
PARAMS=$*

NO_TIMING=0;
NO_ROWS=0;
WINCOLS=`stty size | awk '{print $2}'`

Parse parameters

while ["$1" != ""]
do

case "$1" in
"-c") shift; COMMENT=$1; shift;;
"-d") shift; DB_NAME=$1; shift;;
"-o") shift; RESULTS_DIR=$1; shift;;
"-f") shift; SAVE_SQL=1;;
"-s") shift; DISPLAY_SQL=$1; shift;;
"-sql") shift; SQL_ONLY=1;;
"-t") shift; NO_TIMING=1;;
"-w") shift; NO_ROWS=1;;
"-q") shift; QUIET=1;;
"-r") shift; REUSE_OUT=1;;
"-b") shift; SAVE_OLD_RESULTS=0;;
*) shift; PARSE_ERROR="Invalid Param";;
esac

done

Verify parameters

["$COMMENT" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Comment is required"

["$DB_NAME" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Database name is required"

[$DISPLAY_SQL -ge -1] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -s param"

[$RESULTS_DIR -ge -1] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -o param"
Appendix A. Sample scripts 343

echo "$PARAMS" | awk '/-o -1/ && /-r/{exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Cant combine -r with -o -1"

echo "$PARAMS" | awk '/-o -1/ && /-q/{exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Cant combine -q with -o -1"

[$SQL_ONLY -eq 1] && NO_TIMING=0 && NO_TIMING=0

echo "$PARAMS" | awk '/-sql/ && (/-t/ || /-w/){exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Cant combine -sql with -t or -w"

if ["$PARSE_ERROR" != ""]
then

echo ""
echo $PARSE_ERROR
echo ""
display_syntax
exit

fi

if [$SAVE_SQL -eq 1]
then

Get last query file number
mkdir $QUERIES 2>/dev/null
LAST_QUERY=`ls $QUERIES | sort -n | tail -1`
LAST_QUERY=`basename $LAST_QUERY .sql`

fi

DB_NAME=`echo $DB_NAME | tr [a-z] [A-Z]`

RES_EXT="_${DB_NAME}${RES_EXT}"
SUM_EXT="_${DB_NAME}_${DISPLAY_SQL}${SAVE_SQL}${SQL_ONLY}${NO_TIMING}${NO_ROWS}${SUM_EXT
}"

if [$RESULTS_DIR -gt 0]
then

RES_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${SUM_EXT}
RES_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${RES_EXT}.$$
SUM_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${SUM_EXT}.$$

else
RES_OUT=${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS_FILE}${SUM_EXT}

fi

if [$REUSE_OUT -eq 1 -a ! -f $RES_OUT]
then

echo "Can't reuse $RES_OUT - Missing"
exit

fi

if [$RESULTS_DIR -gt 0]
then

mkdir $RESULTS 2>/dev/null
mkdir $RESULTS/$RESULTS_DIR 2>/dev/null
if [$SAVE_OLD_RESULTS -eq 1]
then

mkdir $RESULTS/$RESULTS_DIR/bak2>/dev/null
[$REUSE_OUT -eq 0] && \
cp $RES_OUT $RES_BAK 2>/dev/null && echo "[Created: $RES_BAK]"
cp $SUM_OUT $SUM_BAK 2>/dev/null && echo "[Created: $SUM_BAK]"

fi
344 DB2 UDB V7.1 Performance Tuning Guide

fi

TMP_SQL="${QUERIES}/sql.$$.tmp"

Clean up previous aborts (trap didn't work :(
rm ${QUERIES}/sql.[0-9]*.tmp 2>/dev/null

export QUERIES DISPLAY_SQL SAVE_SQL SQL_ONLY LAST_QUERY TMP_SQL
export NO_TIMING NO_ROWS WINCOLS

BEGIN

[$QUIET -eq 1] && Q_OUTPUT=">> $SUM_OUT" || Q_OUTPUT="| tee -a $SUM_OUT"
rm $SUM_OUT 2>/dev/null

if [$RESULTS_DIR -ge 0]
then

echo "[Creating: $SUM_OUT]"
else

Q_OUTPUT=""
echo "[No Output Saved]"

fi

eval echo "-- $COMMENT"$Q_OUTPUT
eval echo "-- --"$Q_OUTPUT
eval echo "-- Invocation: $0 $PARAMS"$Q_OUTPUT
eval echo "-- `date`"$Q_OUTPUT
eval echo "-- " $Q_OUTPUT

if [$RESULTS_DIR -eq -1]
then

echo db2 get snapshot for dynamic sql on $DB_NAME
echo ""
db2 get snapshot for dynamic sql on $DB_NAME | awk -f $AWKSCRIPT

else
if [$REUSE_OUT -eq 0]
then

eval echo db2 get snapshot for dynamic sql on $DB_NAME $Q_OUTPUT
eval echo "" $Q_OUTPUT
echo "[Creating: $RES_OUT]"
db2 get snapshot for dynamic sql on $DB_NAME > $RES_OUT

else
echo ""
echo "[Reusing: $RES_OUT]"

fi

eval echo "" $Q_OUTPUT
eval awk -f $AWKSCRIPT $RES_OUT $Q_OUTPUT

fi

The sqlcache.ksh file uses the following sqlcache.awk file:

BEGIN{
OS = "AIX";
QUERIES = ENVIRON["QUERIES"];
DISPLAY_SQL = ENVIRON["DISPLAY_SQL"];
SAVE_SQL = ENVIRON["SAVE_SQL"];
SQL_ONLY = ENVIRON["SQL_ONLY"];
NO_TIMING = ENVIRON["NO_TIMING"];
NO_ROWS = ENVIRON["NO_ROWS"];
LAST_QUERY = ENVIRON["LAST_QUERY"];
TMP_SQL = ENVIRON["TMP_SQL"];
WINCOLS = ENVIRON["WINCOLS"];
Appendix A. Sample scripts 345

header = 0;
COLLECTED = 1;
STMT_NUM = 0;
MIL = 1000000;

#print QUERIES "=QUERIES" ;
#print DISPLAY_SQL "=DISPLAY_SQL" ;
#print SAVE_SQL "=SAVE_SQL" ;
#print SQL_ONLY "=SQL_ONLY" ;
#print NO_TIMING "=NO_TIMING" ;
#print NO_ROWS "=NO_ROWS" ;
#print LAST_QUERY "=LAST_QUERY" ;
#print TMP_SQL "=TMP_SQL" ;
#print WINCOLS "=WINCOLS" ;
}

/SQL1611W/{ print }

/ Number of executions/{
N_EXECUTIONS= "";
N_COMPILES= "";
T_W_PREP= "";
T_B_PREP= "";
R_DELETED= "";
R_INSERTED= "";
R_READ= "";
R_UPDATED= "";
R_WRITTEN= "";
S_SORTS= "";
T_T_EXECUTION= "";
T_T_USER= "";
T_T_SYSTEM= "";

}
/ Number of executions/{ N_EXECUTIONS=$NF}
/ Number of compilations/{ N_COMPILES=$NF}
/ Worst preparation time \(ms\)/{ T_W_PREP=$NF}
/ Best preparation time \(ms\)/{ T_B_PREP=$NF}
/ Rows deleted/{ R_DELETED=$NF}
/ Rows inserted/{ R_INSERTED=$NF}
/ Rows read/ { R_READ=$NF}
/ Rows updated/{ R_UPDATED=$NF}
/ Rows written/{ R_WRITTEN=$NF}
/ Statement sorts/{ S_SORTS=$NF}
/ Total execution time \(sec.ms\)/{ T_T_EXECUTION=$NF}
/ Total user cpu time \(sec.ms\)/{ T_T_USER=$NF}
/ Total system cpu time \(sec.ms\)/{ T_T_SYSTEM=$NF}

/ Statement text/{ # Begin Display

STMT_NUM=STMT_NUM + 1;
S_TEXT=substr($0, index($0, "=")+2);
SQL_OUT="";

if (R_READ == "Collected")
COLLECTED=0;

if (DISPLAY_SQL == -1)
SQL_LEN = length(S_TEXT);

else
SQL_LEN = DISPLAY_SQL;

Save SQL Text to a file, or get name of existing (duplicate) file
if (SAVE_SQL) Save_Sql();
346 DB2 UDB V7.1 Performance Tuning Guide

headline = "";
dataline = "";

if (SQL_ONLY)
{

if (SAVE_SQL)S_Save_Info();
}
else
{

T_A_EXEC= T_T_EXECUTION / N_EXECUTIONS;
T_A_USER= T_T_USER/ N_EXECUTIONS;
T_A_SYSTEM= T_T_SYSTEM / N_EXECUTIONS;
A_R_READ= R_READ/ N_EXECUTIONS;
A_R_WRITTEN= R_WRITTEN/ N_EXECUTIONS;
A_R_INSERTED= R_INSERTED/ N_EXECUTIONS;
A_R_UPDATED= R_UPDATED/ N_EXECUTIONS;
A_R_DELETED= R_DELETED/ N_EXECUTIONS;

N_EXECUTIONS= round_MIL(N_EXECUTIONS);
N_COMPILES= round_MIL(N_COMPILES);
A_R_READ= round_MIL(A_R_READ);
A_R_WRITTEN= round_MIL(A_R_WRITTEN);
A_R_INSERTED= round_MIL(A_R_INSERTED);
A_R_UPDATED= round_MIL(A_R_UPDATED);
A_R_DELETED= round_MIL(A_R_DELETED);

S_Exec_Info();

if (COLLECTED && ! NO_TIMING) S_Timing_Info();

if (SAVE_SQL ||
((! SAVE_SQL) && ! (NO_TIMING || NO_ROWS || ! COLLECTED)))

if (SAVE_SQL)
S_Save_Info();

if (COLLECTED && ! NO_ROWS) S_Rows_Info();
}

S_SQL_Text();

rm_Trailing();

if (headline && ! header)
{

for (i=1; i<=length(headline); i++)
underline = underline "-";

print headline;
print underline;
header = 1;

}

if (dataline) print dataline;
}

##
function round_MIL(val) {

if (val > MIL) val = int(val / MIL) "M";
return val;

}

Appendix A. Sample scripts 347

##
function S_Exec_Info() {

headline = headline sprintf(\
"%4.4s | %6.6s %6.6s | %10.10s | ",
"Qnum",
"Exec's",
"Comp's",
"BestPrepMS");

dataline = dataline sprintf(\
"|%3s | %6s %6s | %10s | ",
STMT_NUM,
N_EXECUTIONS,
N_COMPILES,
T_B_PREP);

}

##
function S_Timing_Info() {

headline = headline sprintf(\
"%10.10s %10.10s %10.10s | ",
"ExecSEC.MS",
"UserSEC.MS",
"SystSEC.MS");

dataline = dataline sprintf(\
"%10.10s %10.10s %10.10s | ",
T_A_EXEC,
T_A_USER,
T_A_SYSTEM);

}

##
function S_Rows_Info() {

SPACERHEAD="";
SPACER="";
WINCOL_Spacing();

headline = headline sprintf(\
"%6.6s %6.6s %s%10.10s %10.10s %10.10s | ",
"R_Read",
"Writtn",
SPACERHEAD,
"Inserted",
"Updated",
"Deleted");

dataline = dataline sprintf(\
"%6.6s %6.6s %s%10.10s %10.10s %10.10s | ",
A_R_READ,
A_R_WRITTEN,
SPACER,
A_R_INSERTED,
A_R_UPDATED,
A_R_DELETED);

}

##
function S_Save_Info() {

headline = headline sprintf(\
"%8.8s | ",
"SQL-File");
348 DB2 UDB V7.1 Performance Tuning Guide

if ((! SQL_ONLY) || (SQL_ONLY && S_TEXT))
dataline = dataline sprintf(\

"%8s | ",
SQL_OUT);

}

##
function S_SQL_Text() {

if (DISPLAY_SQL)
headline = headline sprintf(\

"%-*s | ",
SQL_LEN, "SQL-Text");

if (S_TEXT && SQL_LEN)
dataline = dataline sprintf(\

"%-*.*s | ",
SQL_LEN, SQL_LEN, S_TEXT);

}

##
function WINCOL_Spacing() {

if (COLLECTED && ! (NO_TIMING || NO_ROWS))
{

if (SAVE_SQL)
{

if (WINCOLS == 80)
{

headline = headline " | ";
dataline = dataline " | ";
SPACERHEAD="| ";
SPACER="| ";

}
else if (WINCOLS == 132)
{

SPACERHEAD="|";
SPACER="|";

}
}
else # No SAVE_SQL info
{

if (WINCOLS == 80)
{

headline = headline " | | ";
dataline = dataline " | | ";
SPACERHEAD="| ";
SPACER="| ";

}
else if (WINCOLS == 132)
{

headline = headline " | ";
dataline = dataline " | ";
SPACERHEAD="| ";
SPACER="| ";

}
}

}
}

##
function rm_Trailing() {
Get rid of trailing separator
Appendix A. Sample scripts 349

if (substr(headline, (len=length(headline))-2) == " | ")
{

headline = substr(headline, 1, (len - 3));
dataline = substr(dataline, 1, (len - 3));

}
}

##
function Save_Sql() {
Save SQL Text to a file, or get name of existing (duplicate) file

DUPFILE="";
print S_TEXT > TMP_SQL;
close(TMP_SQL);

Check if a duplicate SQL file exists
if (OS == "AIX")
{

Get filesize of TMP_SQL
"ls -l " TMP_SQL | getline DIRLINE;
close("ls -l " TMP_SQL);
DFN=split(DIRLINE, DIRARRAY);
FILESIZE=DIRARRAY[5];

Loop thru sql files in reverse creation order
Compare only if same filesize
while ((DUPFILE == "") &&

("ls -lt " QUERIES "/[0-9]*.sql" | getline DIRLINE))
{

DFN=split(DIRLINE, DIRARRAY);
if ((DIRARRAY[5] == FILESIZE) &&

(TMP_SQL != DIRARRAY[DFN]))
{

"diff " TMP_SQL " " DIRARRAY[DFN] \
" >/dev/null 2>&1 && " \
" basename " DIRARRAY[DFN] | \
getline DUPFILE;

close("diff " TMP_SQL " " DIRARRAY[DFN] \
" >/dev/null 2>&1 && " \
" basename " DIRARRAY[DFN]);

}
}
close("ls -lt " QUERIES "/[0-9]*.sql");

system("rm " TMP_SQL);
}
else# Untested
{

delete TMP_SQL
}

if (DUPFILE != "")
{ # A duplicate SQL file was found

SQL_OUT = DUPFILE;
}
else
{ # Create SQL file

LAST_QUERY=LAST_QUERY + 1;
SQL_OUT=LAST_QUERY ".sql";
print S_TEXT > QUERIES "/" SQL_OUT;

}
}

350 DB2 UDB V7.1 Performance Tuning Guide

A.4 Disk I/O activity

The script iostat.ksh traps iostat output and displays only part of the
information horizontally, making it easier to track changes in activity. The
output of the iostat.ksh script is saved under the results directory.

Here is the syntax:

The source is as follows:

#!/bin/ksh
iostat.ksh
Raanon Reutlinger, IBM Israel, May 2000

display_syntax()
{

echo "\
SYNTAX: `basename $0` -c \"comment\" [-i m] [-p] [-o N] [-s n] [-r] [-b]
Summerize the output of iostat.

-c: Comment placed on first line of Summary output file (required).
-i: Interval for iostat (default=1).
-p: Only display peak values, when they change, for all disks, etc.

Default is to display all values, as they change.
-o: Save output in dir N under \$RESULTS (-1=current dir, default).
-s: Save iostat output with n in the filename (0=dont save,default).
-r: Don't get iostat, reuse iostat output specifies by -s.
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Stop the utility by hitting Ctrl-C.
Values for -i, -s and -p are part of Summary output filename.
In most cases, best viewed in window-width which is multiple of 10.

"
}

Constants

RESULTS=~/results
RESULTS_FILE="`basename $0 .ksh`"
RES_EXT=".out"
SUM_EXT=".sum"

iostat.ksh -c "comment" [-i m] [-p] [-o N] [-s n] [-r] [-b]
-c: Comment placed on first line of Summary output file (required).
-i: Interval for iostat (default=1).
-p: Only display peak values, when they change, for all disks, etc.

Default is to display all values, as they change.
-o: Save output in dir N under $RESULTS (-1=current dir, default).
-s: Save iostat output with n in the filename (0=dont save,default).
-r: Don't get iostat, reuse iostat output specifies by -s.
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Stop the utility by hitting Ctrl-C.
Values for -i, -s and -p are part of Summary output filename.
In most cases, best viewed in window-width which is multiple of 10.
Appendix A. Sample scripts 351

AWKSCRIPT="`dirname $0`/`basename $0 .ksh`.awk"

Defaults

RESULTS_DIR=-1# -1 defaults to current dir
REUSE_OUT=0
SAVE_OLD_RESULTS=1
PARSE_ERROR=""
PARAMS=$*

INTERVAL=1
SAVE_NAME=0
ONLYPEAKS=0

Parse parameters

while ["$1" != ""]
do

case "$1" in
"-c") shift; COMMENT=$1; shift;;
"-i") shift; INTERVAL=$1; shift;;
"-p") shift; ONLYPEAKS=1;;
"-o") shift; RESULTS_DIR=$1; shift;;
"-s") shift; SAVE_NAME=$1; shift;;
"-r") shift; REUSE_OUT=1; ;;
"-b") shift; SAVE_OLD_RESULTS=0;;
*) shift; PARSE_ERROR="Invalid Param";;
esac

done

Verify parameters

["$COMMENT" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Comment is required"

[$RESULTS_DIR -ge -1] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -o param"

[$INTERVAL -ge 1] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -i param"

[$SAVE_NAME -ge 0] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -s param"

[$REUSE_OUT -eq 1 -a $SAVE_NAME -eq 0] && \
PARSE_ERROR="${PARSE_ERROR} -Cant use -r with -s 0 or missing -s"

if ["$PARSE_ERROR" != ""]
then

echo ""
echo $PARSE_ERROR
echo ""
display_syntax
exit

fi

RES_EXT="_${INTERVAL}${SAVE_NAME}${RES_EXT}"
SUM_EXT="_${INTERVAL}${SAVE_NAME}${ONLYPEAKS}${SUM_EXT}"

if [$RESULTS_DIR -ge 0]
then

RES_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${SUM_EXT}
352 DB2 UDB V7.1 Performance Tuning Guide

RES_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${RES_EXT}.$$
SUM_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${SUM_EXT}.$$

mkdir $RESULTS 2>/dev/null
mkdir $RESULTS/$RESULTS_DIR 2>/dev/null
if [$SAVE_OLD_RESULTS -eq 1]
then

mkdir $RESULTS/$RESULTS_DIR/bak2>/dev/null
[$REUSE_OUT -eq 0] && \
cp $RES_OUT $RES_BAK 2>/dev/null && echo "[Created: $RES_BAK]"
cp $SUM_OUT $SUM_BAK 2>/dev/null && echo "[Created: $SUM_BAK]"

fi
else

RES_OUT=${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS_FILE}${SUM_EXT}

fi

export ONLYPEAKS

BEGIN

[$SAVE_NAME -eq 0] && TEE_OUT="" || TEE_OUT="| tee -a $SUM_OUT"
rm $SUM_OUT 2>/dev/null

[$SAVE_NAME -ne 0] && echo "[Creating: $SUM_OUT]"

eval echo "$COMMENT"$TEE_OUT
eval echo "--"$TEE_OUT
eval echo "Invocation: $0 $PARAMS"$TEE_OUT
eval echo " `date`"$TEE_OUT
eval echo $TEE_OUT

if [$REUSE_OUT -eq 1]
then

[! -f $RES_OUT] && echo "Can't reuse $RES_OUT - Missing" && exit

awk -f $AWKSCRIPT $RES_OUT | tee -a $SUM_OUT
else

echo "Hit Ctrl-C to stop..."
trap "" 1 2 3
if [$SAVE_NAME -eq 0]
then

echo "iostat output and summary not saved"
echo "Waiting for disk i/o ..."

iostat $INTERVAL | awk -f $AWKSCRIPT
else

echo "[Creating: $RES_OUT]"
echo "Waiting for disk i/o ..."

iostat $INTERVAL | tee $RES_OUT | awk -f $AWKSCRIPT
awk -f $AWKSCRIPT $RES_OUT >> $SUM_OUT

fi
fi

The iostat.ksh script uses the following iostat.awk file:

iostat_disk.awk
Raanon Reutlinger, IBM Israel, May 2000

BEGIN{
HEADCOUNTMAX=10; # Heading every x lines
ONLYPEAKS=ENVIRON["ONLYPEAKS"]; # All changes or all Peaks
Appendix A. Sample scripts 353

ALLCHANGES=ENVIRON["ALLCHANGES"];# All changes or all Highest
IOWAIT="IOWAIT"; # Heading for IOWAIT
changedflag=0;
firstdisk="";
lastdisk="";
last_iowait=0;
cnt=0;
if (ONLYPEAKS == "1")

ALLCHANGES=0;
else

ALLCHANGES=1; # Default is ALLCHANGES=YES
}

/^Disks:/ || /^$/{ next }

/^tty:/{

++cnt;
get_iowait=1;
next;

}

get_iowait{

get_iowait=0;
iowait=$NF;
next;

}

(cnt == 1){ lastdisk=$1 }

Skip the first two entries of every disk - ramp up of values
(cnt > 2){

if ((iowait > 0) && (ALLCHANGES || (iowait > last_iowait)))
{

changed[IOWAIT]=cnt;
reads[IOWAIT]=iowait;
writes[IOWAIT]=iowait;
last_iowait=iowait;
changedflag=1;

}
if (($5 > 0) && (ALLCHANGES || ($5 > reads[$1])))
{

changed[$1]=cnt;
reads[$1]=$5;
changedflag=1;

}
if (($6 > 0) && (ALLCHANGES || ($6 > writes[$1])))
{

changed[$1]=cnt;
writes[$1]=$6;
changedflag=1;

}
}

($1 == lastdisk) && (changedflag){ display_results("-") }

END{
if (! ALLCHANGES)
{

headcount = HEADCOUNTMAX - 1;
display_results("=");
354 DB2 UDB V7.1 Performance Tuning Guide

}
}

##########################
function display_results(underline_char)
{

Build heading, then replace spaces with dashes
headcount+=1;
headline1="";
for (disk in changed)

if (changed[disk] > 0)
headline1 = headline1 sprintf(" %-9.9s", disk);

gsub(/ /, underline_char, headline1);
if ((headline1 != headline) || (headcount == HEADCOUNTMAX))
{

headline = headline1;
print headline;
headcount=0;

}

display("R", reads);
display("W", writes);
changedflag=0;

}

###########################
function display(RW, activity)
{

got_activity=0;
line="";
for (disk in changed)
{

if (changed[disk] > 0)
{

if ((activity[disk]) && (changed[disk] || ! ALLCHANGES))
{
line = line sprintf("%s%9s", RW, activity[disk]);
if (disk != IOWAIT)

got_activity=1;
}
else
line = line sprintf("%s%9s", RW, "");
RW="|";

}
if (ALLCHANGES)

activity[disk]="";
}
if (got_activity)

print line;
}

Appendix A. Sample scripts 355

A.5 Lock information

The locks.ksh script summarizes the current locks information being captured
by the locks snapshot monitor. All of the information displayed is collected
even without turning the LOCKS monitor switch ON. The number of locks are
displayed at the database, application and table levels.

Here is the syntax:

The following is the source:

#!/bin/ksh
locks.ksh
Raanon Reutlinger, IBM Israel, May 2000

display_syntax()
{

echo "\
SYNTAX: `basename $0` -c \"comment\" -d dbname [-o N] [-a] [-db] [-q] [-r] [-b]
Summerize the LOCKS information being captures by a LOCKS snapshot.

-c: Comment placed on first line of Summary output file (required)
-d: Database name (required)
-o: Save output in dir N under \$RESULTS

(0=Current dir; -1=Not Saved,default)
-a: DONT display Application level information
-db: DONT display Database level information
-q: Quiet (default is to display output)
-r: Don't get snapshot, reuse existing snapshot output file
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Value for -d is part of snapshot output filename.
Values for -d, -a and -db are part of Summary output filename.

"
}

Constants

RESULTS=~/results
RESULTS_FILE="`basename $0 .ksh`"

locks.ksh -c "comment" -d dbname [-o N] [-a] [-db] [-q] [-r] [-b]
-c: Comment placed on first line of Summary output file (required)
-d: Database name (required)
-o: Save output in dir N under $RESULTS

(0=Current dir; -1=Not Saved,default)
-a: DONT display Application level information
-db: DONT display Database level information
-q: Quiet (default is to display output)
-r: Don't get snapshot, reuse existing snapshot output file
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Value for -d is part of snapshot output filename.
Values for -d, -a and -db are part of Summary output filename.
356 DB2 UDB V7.1 Performance Tuning Guide

RES_EXT=".out"
SUM_EXT=".sum"
AWKSCRIPT="`dirname $0`/`basename $0 .ksh`.awk"

Defaults

QUIET=0
RESULTS_DIR=-1# -1 defaults to not saved
REUSE_OUT=0
SAVE_OLD_RESULTS=1
PARSE_ERROR=""
PARAMS=$*

NO_APPS=0;
NO_DB=0;

Parse parameters

while ["$1" != ""]
do

case "$1" in
"-c") shift; COMMENT=$1; shift;;
"-d") shift; DB_NAME=$1; shift;;
"-o") shift; RESULTS_DIR=$1; shift;;
"-a") shift; NO_APPS=1;;
"-db") shift; NO_DB=1;;
"-q") shift; QUIET=1;;
"-r") shift; REUSE_OUT=1;;
"-b") shift; SAVE_OLD_RESULTS=0;;
*) shift; PARSE_ERROR="Invalid Param";;
esac

done

Verify parameters

["$COMMENT" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Comment is required"

["$DB_NAME" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Database name is required"

[$RESULTS_DIR -ge -1] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -o param"

echo "$PARAMS" | awk '/-o -1/ && /-r/{exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Cant combine -r with -o -1"

echo "$PARAMS" | awk '/-o -1/ && /-q/{exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Cant combine -q with -o -1"

if ["$PARSE_ERROR" != ""]
then

echo ""
echo $PARSE_ERROR
echo ""
display_syntax
exit

fi

DB_NAME=`echo $DB_NAME | tr [a-z] [A-Z]`

RES_EXT="_${DB_NAME}${RES_EXT}"
SUM_EXT="_${DB_NAME}_${NO_APPS}${NO_DB}${SUM_EXT}"
Appendix A. Sample scripts 357

if [$RESULTS_DIR -gt 0]
then

RES_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${SUM_EXT}
RES_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${RES_EXT}.$$
SUM_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${SUM_EXT}.$$

else
RES_OUT=${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS_FILE}${SUM_EXT}

fi

if [$REUSE_OUT -eq 1 -a ! -f $RES_OUT]
then

echo "Can't reuse $RES_OUT - Missing"
exit

fi

if [$RESULTS_DIR -gt 0]
then

mkdir $RESULTS 2>/dev/null
mkdir $RESULTS/$RESULTS_DIR 2>/dev/null
if [$SAVE_OLD_RESULTS -eq 1]
then

mkdir $RESULTS/$RESULTS_DIR/bak2>/dev/null
[$REUSE_OUT -eq 0] && \
cp $RES_OUT $RES_BAK 2>/dev/null && echo "[Created: $RES_BAK]"
cp $SUM_OUT $SUM_BAK 2>/dev/null && echo "[Created: $SUM_BAK]"

fi
fi

export NO_APPS NO_DB

BEGIN

[$QUIET -eq 1] && Q_OUTPUT=">> $SUM_OUT" || Q_OUTPUT="| tee -a $SUM_OUT"
rm $SUM_OUT 2>/dev/null

if [$RESULTS_DIR -ge 0]
then

echo "[Creating: $SUM_OUT]"
else

Q_OUTPUT=""
echo "[No Output Saved]"

fi

eval echo "-- $COMMENT"$Q_OUTPUT
eval echo "-- --"$Q_OUTPUT
eval echo "-- Invocation: $0 $PARAMS"$Q_OUTPUT
eval echo "-- `date`"$Q_OUTPUT
eval echo "-- " $Q_OUTPUT

if [$RESULTS_DIR -eq -1]
then

echo db2 get snapshot for locks on $DB_NAME
echo ""
db2 get snapshot for locks on $DB_NAME | awk -f $AWKSCRIPT

else
if [$REUSE_OUT -eq 0]
then

eval echo db2 get snapshot for locks on $DB_NAME $Q_OUTPUT
echo ""
echo "[Creating: $RES_OUT]"
358 DB2 UDB V7.1 Performance Tuning Guide

db2 get snapshot for locks on $DB_NAME > $RES_OUT
else

echo ""
echo "[Reusing: $RES_OUT]"

fi

eval echo "" $Q_OUTPUT
eval awk -f $AWKSCRIPT $RES_OUT $Q_OUTPUT

fi

The locks.ksh script uses the following locks.awk file:

BEGIN{
NO_APPS = ENVIRON["NO_APPS"];
NO_DB = ENVIRON["NO_DB"];
headline = "";
dashes = "------------------------------";
print "";

}

/SQL1611W/{ print }

Snapshot info at database level
!NO_DB && /Database name /{ print }
!NO_DB && /Database path /{ print }
!NO_DB && /Input database alias /{ print }
!NO_DB && /Locks held / && ! A_HAND{ print }
!NO_DB && /Applications currently connected /{ print }
!NO_DB && /Agents currently waiting on locks /{ print }
!NO_DB && /Snapshot timestamp /{ print ; print "" }

Application info
/Application handle /{ A_HAND = "" ;

A_NAME= "" ;
A_USER= "" ;
H_HAND= "" ;
A_ID = "" ;
A_STATUS= "" ;
A_LOCKS= "" ;
A_WAIT= "" ;

}
/Application handle /{ A_HAND = $NF }
/Application ID /{ A_ID = $NF ; sub(/\.[0-9]*$/, "", A_ID) }
/Application name /{ A_NAME = $NF }
/Authorization ID /{ A_USER = $NF }
/Application status /{ A_STATUS = substr($0, index($0, "=") + 2) }
/Status change time /{ A_TIME = $NF }
/Locks held / && A_HAND{ A_LOCKS = $NF }
/Total wait time \(ms\)/{ A_WAIT = $NF }

/Total wait time \(ms\)/ && (! NO_APPS) {

if (A_WAIT == "Collected") A_WAIT = "";

if (! headline)
{

headline = sprintf(\
"%-10.10s %-8.8s %-6.6s %-20.20s %-15.15s %-5.5s %-7.7s",

"APP.NAME",
"APP.USER",
"HANDLE",
"APP.ID",
"APP.STATUS",
Appendix A. Sample scripts 359

"LOCKS",
"WAIT.ms");

underline = sprintf(\
"%-10.10s %-8.8s %-6.6s %-20.20s %-15.15s %-5.5s %-7.7s",

dashes,
dashes,
dashes,
dashes,
dashes,
dashes,
dashes);

print headline;
print underline;

}
dataline = sprintf(\
"%-10.10s %-8.8s %6.6s %-20.20s %-15.15s %5.5s %s",

A_NAME,
A_USER,
A_HAND,
A_ID,
A_STATUS,
A_LOCKS,
A_WAIT);

print dataline;
}

Lock info
/ Object Type /{ L_TYPE = "" ;

L_SCHEMA = "" ;
L_TABLE = "" ;
L_MODE = "" ;
L_STATUS = "" ;
L_ESC = "" ;

}
/ Object Type /{ L_TYPE = $NF }
/ Table Schema /{ L_SCHEMA = $NF }
/ Table Name /{ L_TABLE = $NF }
/ Mode /{ L_MODE = $NF }
/ Status /{ L_STATUS = $NF }
/ Lock Escalation /{ L_ESC = $NF ;

LOCKS [L_SCHEMA ,
L_TABLE ,
L_TYPE ,
L_ESC ,
L_MODE ,
L_STATUS] ++;

}

END{
headline = "";
for (ind in LOCKS)
{

if (! headline)
{

headline = sprintf(\
"%-30.30s | %-10.10s | %-3.3s | %-4.4s | %-10.10s | %5.5s",

"TABLE NAME",
"TYPE",
"ESCALATED",
"MODE",
"STATUS",
360 DB2 UDB V7.1 Performance Tuning Guide

"COUNT");

underline = sprintf(\
"%-30.30s | %-10.10s | %-3.3s | %-4.4s | %-10.10s | %5.5s",

dashes,
dashes,
dashes,
dashes,
dashes,
dashes);

underline = headline;
gsub(/./, "-", underline);

print "" ;
print headline;
print underline;

}

split(ind, LOCK_INFO, SUBSEP);
SCHEMA_TABLE = LOCK_INFO[1] "." LOCK_INFO[2];
dataline = sprintf(\
"%-30.30s | %-10.10s | %-3.3s | %-4.4s | %-10.10s | %5.5s",

SCHEMA_TABLE,
LOCK_INFO[3],
LOCK_INFO[4],
LOCK_INFO[5],
LOCK_INFO[6],
LOCKS[ind]);

print dataline;
}

if (! headline)
{

print "";
print "*** NO LOCKS ***";

}
}

Appendix A. Sample scripts 361

A.6 Statement Event Monitor

The mon_stmt.ksh script returns information about the SQL statements (for
example, OPEN CURSOR, FETCH) reaching the DB2 engine as collected by the
statements Event Monitor. This sample script issues the db2evmon command
which reads the event records and generates a report. Before using the
script, the Event Monitor has to be created and activated.

Here is the syntax:

The following is the source:

mon_stmt.ksh -c "comment" -d dbname -m mon_name [-o N] [-f]
[-s N] [-sql] [-i Q] [-p] [-ps] [-q] [-r] [-b]

-c: Comment placed on first line of Summary output file (required)
-d: Database name (required)
-m: Monitor name (required)
-o: Save output in dir N under $RESULTS

(0=Current dir; -1=Not Saved,default)
-f: Save each SQL stmt to a different file in the $QUERIES dir
-s: Display N characters of SQL stmt (-1=all, default)
-sql: Only display SQL statements, without statistics
-i: Include info in output, where Q could contain any of the following

S=Start-Time ; O=Operation ; T=Timing ; R=Row-Counts; X=Sort-Info
N=None_of_the_above (default=SORTX)

-p: mon_name is a PIPE; Don't save the summary to an output file.
-ps: mon_name is a PIPE; Save the summary to an output file.

Summary output is only visible when the event monitor closes.
-q: Quiet (default is to display output)
-r: Don't read the monitor files, reuse existing output (extraction)
-b: DONT save prior (old) results to bak directory (default=save)

(0=Current dir; -1=Not Saved,default)
-f: Save each SQL stmt to a different file in the $QUERIES dir
-s: Display N characters of SQL stmt (-1=all, default)
-sql: Only display SQL statements, without statistics
-i: Include info in output, where Q could contain any of the following

S=Start-Time ; O=Operation ; T=Timing ; R=Row-Counts; X=Sort-Info
N=None_of_the_above (default=SORTX)

-p: mon_name is a PIPE; Don't save the summary to an output file.
-ps: mon_name is a PIPE; Save the summary to an output file.

Summary output is only visible when the event monitor closes.
-q: Quiet (default is to display output)
-r: Don't read the monitor files, reuse existing output (extraction)
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Value for -d is part of monitor output filename.
Values for -s, -f, -sql and -i are part of Summary output filename.
Pipes: Make sure to run this utility BEFORE starting the event monitor

(prompts given). For -ps only flushed summary output is
visible in real-time (instructions given). So for real-time
viewing, use -p, which doesn't save summary to a file.

In most cases, best viewed in 132 column window.
362 DB2 UDB V7.1 Performance Tuning Guide

#!/bin/ksh
mon_stmt.ksh
Raanon Reutlinger, IBM Israel, May 2000

display_syntax()
{

echo "\
SYNTAX: `basename $0` -c \"comment\" -d dbname -m mon_name [-o N] [-f]

[-s N] [-sql] [-i Q] [-p] [-ps] [-q] [-r] [-b]
Summerize STATEMENT statistics captured from an Event Monitor.

-c: Comment placed on first line of Summary output file (required)
-d: Database name (required)
-m: Monitor name (required)
-o: Save output in dir N under \$RESULTS

(0=Current dir; -1=Not Saved,default)
-f: Save each SQL stmt to a different file in the \$QUERIES dir
-s: Display N characters of SQL stmt (-1=all, default)
-sql: Only display SQL statements, without statistics
-i: Include info in output, where Q could contain any of the following

S=Start-Time ; O=Operation ; T=Timing ; R=Row-Counts; X=Sort-Info
N=None_of_the_above (default=SORTX)

-p: mon_name is a PIPE; Don't save the summary to an output file.
-ps: mon_name is a PIPE; Save the summary to an output file.

Summary output is only visible when the event monitor closes.
-q: Quiet (default is to display output)
-r: Don't read the monitor files, reuse existing output (extraction)
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Value for -d is part of monitor output filename.
Values for -s, -f, -sql and -i are part of Summary output filename.
Pipes: Make sure to run this utility BEFORE starting the event monitor

(prompts given). For -ps only flushed summary output is
visible in real-time (instructions given). So for real-time

viewing, use -p, which doesn't save summary to a file.
In most cases, best viewed in 132 column window.

"
}

Constants

QUERIES=~/queries
RESULTS=~/results
RESULTS_FILE="`basename $0 .ksh`"
RES_EXT=".out"
SUM_EXT=".sum"
AWKSCRIPT="`dirname $0`/`basename $0 .ksh`.awk"

Defaults

QUIET=0
DISPLAY_SQL=-1
SAVE_SQL=0
SQL_ONLY=0
RESULTS_DIR=-1# -1 defaults to not saved
REUSE_OUT=0
SAVE_OLD_RESULTS=1
PARSE_ERROR=""
PARAMS=$*

INCLUDE_OPT="SORTX"
PIPE=0
PIPE_SAVE=0
Appendix A. Sample scripts 363

Parse parameters

while ["$1" != ""]
do

case "$1" in
"-c") shift; COMMENT=$1; shift;;
"-d") shift; DB_NAME=$1; shift;;
"-m") shift; MON_NAME=$1; shift;;
"-o") shift; RESULTS_DIR=$1; shift;;
"-f") shift; SAVE_SQL=1;;
"-s") shift; DISPLAY_SQL=$1; shift;;
"-sql") shift; SQL_ONLY=1;;
"-i") shift; INCLUDE_OPT=$1; shift;;
"-p") shift; PIPE=1;;
"-ps") shift; PIPE=1; PIPE_SAVE=1;;
"-q") shift; QUIET=1;;
"-r") shift; REUSE_OUT=1;;
"-b") shift; SAVE_OLD_RESULTS=0;;
*) shift; PARSE_ERROR="Invalid Param";;
esac

done

Verify parameters

["$COMMENT" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Comment is required"

["$DB_NAME" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Database name is required"

["$MON_NAME" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Monitor Name is required"

[$DISPLAY_SQL -ge -1] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -s param"

[$RESULTS_DIR -ge -1] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -o param"

echo "$PARAMS" | awk '/-sql/ && /-i/{exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Cant combine -sql with -i"

echo "$PARAMS" | awk '/-p[$]/ && /-ps/{exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Cant combine -ps with -p"

echo "$PARAMS" | awk '/-p[$]/ && /-q/{exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Cant combine -q with -p (only with -ps)"

echo "$PARAMS" | awk '/-o -1/ && /-r/{exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Cant combine -r with -o -1"

echo "$PARAMS" | awk '/-o -1/ && /-q/{exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Cant combine -q with -o -1"

[$SQL_ONLY -eq 1] && INCLUDE_OPT="N"

echo "$INCLUDE_OPT" | awk '/[^SORTX]/ && ($0 != "N"){exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Invalid value for -i param"

if ["$PARSE_ERROR" != ""]
then

echo ""
364 DB2 UDB V7.1 Performance Tuning Guide

echo $PARSE_ERROR
echo ""
display_syntax
exit

fi

if [$SAVE_SQL -eq 1]
then

Get last query file number
mkdir $QUERIES 2>/dev/null
LAST_QUERY=`ls $QUERIES | sort -n | tail -1`
LAST_QUERY=`basename $LAST_QUERY .sql`

fi

RESULTS_FILE=`echo $MON_NAME | tr [a-z] [A-Z]`
DB_NAME=`echo $DB_NAME | tr [a-z] [A-Z]`

RES_EXT="_${DB_NAME}${RES_EXT}"
SUM_EXT="_${DB_NAME}_${DISPLAY_SQL}${SAVE_SQL}${SQL_ONLY}${INCLUDE_OPT}${SUM_EXT}"

if [$RESULTS_DIR -gt 0]
then

RES_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${SUM_EXT}
RES_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${RES_EXT}.$$
SUM_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${SUM_EXT}.$$

else
RES_OUT=${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS_FILE}${SUM_EXT}

fi

if [$REUSE_OUT -eq 1 -a ! -f $RES_OUT]
then

echo "Can't reuse $RES_OUT - Missing"
exit

fi

if [$RESULTS_DIR -gt 0]
then

mkdir $RESULTS 2>/dev/null
mkdir $RESULTS/$RESULTS_DIR 2>/dev/null
if [$SAVE_OLD_RESULTS -eq 1]
then

mkdir $RESULTS/$RESULTS_DIR/bak2>/dev/null
[$REUSE_OUT -eq 0] && \
cp $RES_OUT $RES_BAK 2>/dev/null && echo "[Created: $RES_BAK]"
cp $SUM_OUT $SUM_BAK 2>/dev/null && echo "[Created: $SUM_BAK]"

fi
fi

TMP_SQL="${QUERIES}/sql.$$.tmp"

Clean up previous aborts (trap didn't work :(
rm ${QUERIES}/sql.[0-9]*.tmp 2>/dev/null

export QUERIES DISPLAY_SQL SAVE_SQL SQL_ONLY LAST_QUERY TMP_SQL
export INCLUDE_OPT

BEGIN

[$QUIET -eq 1] && Q_OUTPUT=">> $SUM_OUT" || Q_OUTPUT="| tee -a $SUM_OUT"
rm $SUM_OUT 2>/dev/null
Appendix A. Sample scripts 365

if [$RESULTS_DIR -ge 0]
then

R_OUTPUT="| tee $RES_OUT"

with -p, Summary output not saved
if [$PIPE -eq 1 -a $PIPE_SAVE -eq 0]
then

Q_OUTPUT=""
echo "[Summary Output Not Saved]"

else
echo "[Creating: $SUM_OUT]"

fi
else

R_OUTPUT=""
Q_OUTPUT=""
echo "[No Output Saved]"

fi

eval echo "-- $COMMENT"$Q_OUTPUT
eval echo "-- --"$Q_OUTPUT
eval echo "-- Invocation: $0 $PARAMS"$Q_OUTPUT
eval echo "-- `date`"$Q_OUTPUT
eval echo "-- " $Q_OUTPUT

if [$PIPE -eq 0 -o $REUSE_OUT -eq 1]
then

if [$RESULTS_DIR -eq -1]
then

echo db2evmon $DB_NAME $MON_NAME
echo ""
db2evmon $DB_NAME $MON_NAME | awk -f $AWKSCRIPT

else
if [$REUSE_OUT -eq 0]
then

eval echo db2evmon $DB_NAME MON_NAMEQ_OUTPUT
echo ""
echo "[Creating: $RES_OUT]"
db2evmon $DB_NAME $MON_NAME > $RES_OUT

else
echo ""
echo "[Reusing: $RES_OUT]"

fi

echo ""
eval awk -f $AWKSCRIPT $RES_OUT $Q_OUTPUT

fi
else

echo "\
--
Start the event monitor to begin summarizing (filtering) as follows:
Use: db2 SET EVENT MONITOR $MON_NAME STATE 1

--"
or: . `dirname $0`/mon_state.ksh $MON_NAME 1

if [$PIPE_SAVE -eq 0]
then

Gives better real-time display without pipe after awk
echo ""
echo db2evmon $DB_NAME $MON_NAME
echo ""
eval db2evmon $DB_NAME $MON_NAME $R_OUTPUT | awk -f $AWKSCRIPT

else
echo "\

Only when all pipe buffers are flushed will be output be visible.
366 DB2 UDB V7.1 Performance Tuning Guide

To flush event monitor records manually
Use: db2 FLUSH EVENT MONITOR $MON_NAME BUFFER

Closing the Event Monitor also flushes all records.
Use: db2 SET EVENT MONITOR $MON_NAME STATE 0

--"
or: . `dirname $0`/mon_state.ksh $MON_NAME 0

eval echo "" $Q_OUTPUT
eval echo db2evmon $DB_NAME $MON_NAME $Q_OUTPUT
eval echo "" $Q_OUTPUT
["$R_OUTPUT" != ""] && echo "[Creating: $RES_OUT]"
eval db2evmon $DB_NAME $MON_NAME $R_OUTPUT | \

eval awk -f $AWKSCRIPT$Q_OUTPUT
fi

fi

The mon_stmt.ksh script uses the mon_stmt.awk file as the following source:

BEGIN{
OS = "AIX";
QUERIES = ENVIRON["QUERIES"];
DISPLAY_SQL = ENVIRON["DISPLAY_SQL"];
SAVE_SQL = ENVIRON["SAVE_SQL"];
SQL_ONLY = ENVIRON["SQL_ONLY"];
LAST_QUERY = ENVIRON["LAST_QUERY"];
TMP_SQL = ENVIRON["TMP_SQL"];
INCLUDE_OPT = ENVIRON["INCLUDE_OPT"];

S=Start-Time ; O=Operation ; T=Timing ; R=Row-Counts; X=Sort-Info;N=None
if (INCLUDE_OPT != "N")
{

if (INCLUDE_OPT ~ /S/) OPT_ST_TIME = 1;
if (INCLUDE_OPT ~ /O/) OPT_OPER = 1;
if (INCLUDE_OPT ~ /T/) OPT_TIMES = 1;
if (INCLUDE_OPT ~ /R/) OPT_ROWS = 1;
if (INCLUDE_OPT ~ /X/) OPT_SORTS = 1;

}

STMT_NUM = 0;
MIL = 1000000;
CON_REC = 0;
header = 0;
h=0; # Counter of Handles

}

/) Connection Header Event .../{ CON_REC=1; }
/ Appl Handle: / && CON_REC{ HAND[++h] = $NF ; H=$NF ;

CA_HAND[H] = $NF}
/ Appl Id: /&& CON_REC{ CA_ID[H] = $NF}
/ Appl Seq number: /&& CON_REC{ CA_SEQ[H] = $NF}
/ Program Name : /{ C_PROG[H] = $NF}
/ Authorization Id: /{ C_DBUSER[H] = $NF}
/ Execution Id : /{ C_CLUSER[H] = $NF}
/ Client Process Id: /{ C_CLPROC[H] = $NF}
/ Client Database Alias: /{ C_DBNAME[H] = $NF}
/ Client Communication Protocol: /{ C_PROTOCOL[H] = $NF}
/ Client Network Name: /{ C_NET[H] = $NF}
/ Connect timestamp: /{ C_TIME[H] = $(NF-1) $NF }
##
/) Statement Event .../{ CON_REC = 0 ;

A_HANDLE= "" ;
A_ID= "" ;
A_SEQ= "" ;
S_TYPE= "" ;
Appendix A. Sample scripts 367

S_OPER= "" ;
P_SECTION= "" ;
P_CREATOR= "" ;
P_PACKAGE= "" ;
S_CURSOR= "" ;
S_BLOCKED= "" ;
S_TEXT = "" ;
S_TYPE = "" ;
S_START_T= "" ;
S_EXEC_T= "" ;
S_AGENTS= "" ;
S_U_CPU_T= "" ;
S_S_CPU_T= "" ;
S_FETCHES= "" ;
S_SORTS= "" ;
S_SORT_T= "" ;
S_SORT_OFLOWS = "" ;
S_ROWS_READ= "" ;
S_ROWS_WRITTEN= "" ;
S_SQLCODE= "" ;

}
#) Statement Event ...
/ Appl Handle: /&& ! CON_REC{ A_HANDLE= $NF }
/ Appl Id: /&& ! CON_REC{ A_ID = substr($NF, length($NF)-4) }
/ Appl Seq number: /&& ! CON_REC{ A_SEQ= $NF }

/ Type : /{ S_TYPE= $NF }
/ Operation: /{ S_OPER = substr($0, 14)}
/ Section : /{ P_SECTION= $NF }
/ Creator : /{ P_CREATOR= $NF }
/ Package : /{ P_PACKAGE= $NF }
/ Cursor : /{ S_CURSOR= $NF }
/ Cursor was blocking: /{ S_BLOCKED= $NF }
/ Text : /{ S_TEXT = substr($0, 14)}

/ Operation: Static Commit/{ S_TYPE = "Static";

S_OPER= "Commit"}
/ Operation: Execute Immediate/{ S_OPER= "ExecImmed"}

/ Start Time: /{ S_START_T= $NF }
Stop Time: 05-16-2000 18:25:00.650866 - for datetime: $(NF-1) $NF }
/ Exec Time: /{ S_EXEC_T= $(NF-1) } #Sec
/ Number of Agents created: /{ S_AGENTS= $NF }
/ User CPU: / { S_U_CPU_T= $(NF-1) } #Sec
/ System CPU: /{ S_S_CPU_T= $(NF-1) } #Sec
/ Fetch Count: /{ S_FETCHES= $NF }
/ Sorts: / { S_SORTS= $NF }
/ Total sort time: /{ S_SORT_T= $NF } #Msec
/ Sort overflows: /{ S_SORT_OFLOWS = $NF }
/ Rows read: /{ S_ROWS_READ= $NF }
/ Rows written: /{ S_ROWS_WRITTEN= $NF }
Internal rows deleted: 0
Internal rows updated: 0
Internal rows inserted: 0
SQLCA:
/ sqlcode: / { S_SQLCODE= $NF }
sqlstate: 00000

/ sqlstate: /{ # Begin Display

STMT_NUM=STMT_NUM + 1;
SQL_OUT="";
368 DB2 UDB V7.1 Performance Tuning Guide

if (DISPLAY_SQL == -1)
SQL_LEN = length(S_TEXT);

else
SQL_LEN = DISPLAY_SQL;

Save SQL Text to a file, or get name of existing (duplicate) file
if (S_TEXT && SAVE_SQL) Save_Sql();

headline = "";
dataline = "";

if (SQL_ONLY)
{

if (SAVE_SQL)S_Save_Info();
}
else
{

S_App_Info();
if (SAVE_SQL)S_Save_Info();
if (OPT_OPER) S_Oper_Info();
if (OPT_TIMES) S_Timing_Info();
if (OPT_ROWS) S_Rows_Info();

if (OPT_SORTS)
{

When all options displayed, remove '|' to fit in 132
if (INCLUDE_OPT ~ /[SORTX]{5}/)
{

rm_Trailing();
headline = headline " ";
dataline = dataline " ";

}
S_Sort_Info();

}
}

S_SQL_Text();

rm_Trailing();

if (headline && ! header)
{

for (i=1; i<=length(headline); i++)
underline = underline "-";

print headline;
print underline;
header = 1;

}

if (dataline) print dataline;
}

##
function S_App_Info() {

headline = headline sprintf(\
"%4.4s %5.5s %-4.4s",
"Hand",
"AppID",
"Seq");

dataline = dataline sprintf(\
"%4s %5s %4s",
Appendix A. Sample scripts 369

A_HANDLE,
A_ID,
A_SEQ);

if (OPT_ST_TIME)
{
headline = headline sprintf(\

" %-15.15s",
"Start-Time");

dataline = dataline sprintf(\
" %15s",
S_START_T);

}

headline = headline " | ";
dataline = dataline " | ";

}

##
function S_Save_Info() {

headline = headline sprintf(\
"%8.8s | ",
"SQL-File");

if ((! SQL_ONLY) || (SQL_ONLY && S_TEXT))
dataline = dataline sprintf(\

"%8s | ",
SQL_OUT);

}

##
function S_Oper_Info() {

headline = headline sprintf(\
"%-2.2s %-9.9s %5.5s | ",
"Type",
"Oper",
"Code");

dataline = dataline sprintf(\
"%-2.2s %-9s %5s | ",
S_TYPE,
S_OPER,
S_SQLCODE);

}

##
function S_Timing_Info() {

headline = headline sprintf(\
"%8.8s %8.8s %8.8s | ",
"Exec(s)",
"UCPU(s)",
"SCPU(s)");

dataline = dataline sprintf(\
"%8s %8s %8s | ",
substr(S_EXEC_T, 1, 8),
substr(S_U_CPU_T, 1, 8),
substr(S_S_CPU_T, 1, 8));

}

##
function S_Rows_Info() {
370 DB2 UDB V7.1 Performance Tuning Guide

headline = headline sprintf(\
"%9.9s %9.9s %5.5s | ",
"Read",
"Written",
"Fetch");

dataline = dataline sprintf(\
"%9s %9s %5s | ",
S_ROWS_READ,
S_ROWS_WRITTEN,
S_FETCHES);

}

##
function S_Sort_Info() {

headline = headline sprintf(\
"%5.5s %5.5s %9.9s | ",
"Sorts",
"SOVFL",
"Sort(ms)");

dataline = dataline sprintf(\
"%5s %5s %9s | ",
S_SORTS,
S_SORT_OFLOWS,
S_SORT_T);

}

##
function S_SQL_Text() {

if (DISPLAY_SQL)
headline = headline sprintf(\

"%-*s | ",
SQL_LEN, "SQL-Text");

if (S_TEXT && SQL_LEN)
dataline = dataline sprintf(\

"%-*.*s | ",
SQL_LEN, SQL_LEN, S_TEXT);

exception to rm_Trailing, force removal of seperator when no SQL text
since this is always the last entry on the line
if (S_TEXT == "")

dataline = substr(dataline, 1, (len - 3));
}

##
function rm_Trailing() {
Get rid of trailing separator

if (substr(headline, (len=length(headline))-2) == " | ")
{

headline = substr(headline, 1, (len - 3));
dataline = substr(dataline, 1, (len - 3));

}
}

##
function Save_Sql() {
Save SQL Text to a file, or get name of existing (duplicate) file

DUPFILE="";
print S_TEXT > TMP_SQL;
close(TMP_SQL);
Appendix A. Sample scripts 371

Check if a duplicate SQL file exists
if (OS == "AIX")
{

Get filesize of TMP_SQL
"ls -l " TMP_SQL | getline DIRLINE;
close("ls -l " TMP_SQL);
DFN=split(DIRLINE, DIRARRAY);
FILESIZE=DIRARRAY[5];

Loop thru sql files in reverse creation order
Compare only if same filesize
while ((DUPFILE == "") &&

("ls -lt " QUERIES "/[0-9]*.sql" | getline DIRLINE))
{

DFN=split(DIRLINE, DIRARRAY);
if ((DIRARRAY[5] == FILESIZE) &&

(TMP_SQL != DIRARRAY[DFN]))
{

"diff " TMP_SQL " " DIRARRAY[DFN] \
" >/dev/null 2>&1 && " \
" basename " DIRARRAY[DFN] | \
getline DUPFILE;

close("diff " TMP_SQL " " DIRARRAY[DFN] \
" >/dev/null 2>&1 && " \
" basename " DIRARRAY[DFN]);

}
}
close("ls -lt " QUERIES "/[0-9]*.sql");

system("rm " TMP_SQL);
}
else# Untested
{

delete TMP_SQL
}

if (DUPFILE != "")
{ # A duplicate SQL file was found

SQL_OUT = DUPFILE;
}
else
{ # Create SQL file

LAST_QUERY=LAST_QUERY + 1;
SQL_OUT=LAST_QUERY ".sql";
print S_TEXT > QUERIES "/" SQL_OUT;

}
}

372 DB2 UDB V7.1 Performance Tuning Guide

A.7 Benchmark tool

The db2batch.ksh shell script executes the db2batch tool and stores the output
to the directory structure. The syntax of this script is as follows:

The source is as follows:

#!/bin/ksh
db2bench.ksh
Raanon Reutlinger, IBM Israel, May 2000

display_syntax()
{

echo "\
SYNTAX: `basename $0` -c \"comment\" -d dbname [-u user/pwd] -q queryNum -o N

[-ir rows] [-if rows] [-e m] [-v] [-b]
Execute db2batch tool which executes the SQL found in a file and reports on
execution times and snapshot information.

-c: Comment placed on first line of Summary output file (required)
-d: Database name (required)
-u: Userid and password seperated by slash (default=db2inst1/db2inst1)
-q: Query number to execute. File with .sql extension must exist in

\$QUERIES directory (required)
-o: Save output in dir N under \$RESULTS (required)

(0=Current dir; -1=Not Valid; no default)
-ir: Rows to return to output file (-1=all,default=10)
-if: Rows to fetch even if not returned (-1=all,default)
-e: Explain level: 0=ExecuteOnly; 1=ExplainOnly; 2=Explain&Execute

(default=2)
-v: Verbose (default is NOT to display output)
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Value for -d is part of output and summary filename.

"
}

Constants

db2bench.ksh -c "comment" -d dbname [-u user/pwd] -q queryNum -o N
[-ir rows] [-if rows] [-e m] [-v] [-b]

-c: Comment placed on first line of Summary output file (required)
-d: Database name (required)
-u: Userid and password seperated by slash (default=db2inst1/db2inst1)
-q: Query number to execute. File with .sql extension must exist in

$QUERIES directory (required)
-o: Save output in dir N under $RESULTS (required)

(0=Current dir; -1=Not Valid; no default)
-ir: Rows to return to output file (-1=all,default=10)
-if: Rows to fetch even if not returned (-1=all,default)
-e: Explain level: 0=ExecuteOnly; 1=ExplainOnly; 2=Explain&Execute

(default=2)
-v: Verbose (default is NOT to display output)
-b: DONT save prior (old) results to bak directory (default=save)

(Not saved anyway unless -o is greater than 0)
Notes:
Value for -d is part of output and summary filename.
Appendix A. Sample scripts 373

QUERIES=~/queries
RESULTS=~/results
RESULTS_FILE="`basename $0 .ksh`.awk"
RES_EXT=".out"
SUM_EXT=".sum"

Defaults

QUIET=1
RESULTS_DIR="" # no default
SAVE_OLD_RESULTS=1
PARSE_ERROR=""
PARAMS=$*

USERPASS="db2inst1/db2inst1"
QRYNUM=""
IROWS=10
IFETCH=-1
EXPLAIN=2

Parse parameters

while ["$1" != ""]
do

case "$1" in
"-c") shift; COMMENT=$1; shift ;;
"-d") shift; DB_NAME=$1; shift ;;
"-u") shift; USERPASS=$1; shift ;;
"-q") shift; QRYNUM=$1; shift ;;
"-ir") shift; IROWS=$1; shift ;;
"-if") shift; IFETCH=$1; shift ;;
"-e") shift; EXPLAIN=$1; shift ;;
"-o") shift; RESULTS_DIR=$1; shift ;;
"-v") shift; QUIET=0 ;;
"-b") shift; SAVE_OLD_RESULTS=0 ;;
*) shift; PARSE_ERROR="Invalid Param" ;;
esac

done

Verify parameters

["$COMMENT" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Comment is required"

["$DB_NAME" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Database name is required"

["$QRYNUM" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Query number is required" || \

[$QRYNUM -ge 0] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -q param"

["$RESULTS_DIR" = ""] && \
PARSE_ERROR="${PARSE_ERROR} -Output directory number is required" || \

[$RESULTS_DIR -ge 0] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -o param"

echo "$USERPASS" | awk -F/ '($1 == "") || ($2 == ""){exit -1}' || \
PARSE_ERROR="${PARSE_ERROR} -Invalid user/pass following -u"

[$IROWS -ge -1] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -ir param"
374 DB2 UDB V7.1 Performance Tuning Guide

[$IFETCH -ge -1] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -if param"

[$EXPLAIN -ge 0 -a $EXPLAIN -le 2] 2>/dev/null || \
PARSE_ERROR="${PARSE_ERROR} -Invalid number following -e param"

if ["$PARSE_ERROR" != ""]
then

echo ""
echo $PARSE_ERROR
echo ""
display_syntax
exit

fi

DB_NAME=`echo $DB_NAME | tr [a-z] [A-Z]`
RESULTS_FILE=$QRYNUM

RES_EXT="_${DB_NAME}${RES_EXT}"
SUM_EXT="_${DB_NAME}${SUM_EXT}"

if [$RESULTS_DIR -gt 0]
then

RES_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS}/${RESULTS_DIR}/${RESULTS_FILE}${SUM_EXT}
RES_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${RES_EXT}.$$
SUM_BAK=${RESULTS}/${RESULTS_DIR}/bak/${RESULTS_FILE}${SUM_EXT}.$$

else
RES_OUT=${RESULTS_FILE}${RES_EXT}
SUM_OUT=${RESULTS_FILE}${SUM_EXT}

fi

if [$RESULTS_DIR -gt 0]
then

mkdir $RESULTS 2>/dev/null
mkdir $RESULTS/$RESULTS_DIR 2>/dev/null
if [$SAVE_OLD_RESULTS -eq 1]
then

mkdir $RESULTS/$RESULTS_DIR/bak 2>/dev/null
cp $RES_OUT $RES_BAK 2>/dev/null && echo "[Created: $RES_BAK]"
cp $SUM_OUT $SUM_BAK 2>/dev/null && echo "[Created: $SUM_BAK]"
[-f $RES_BAK] && \

echo "[Modifying: $RES_BAK]" && \
`dirname $0`/db2bench_prefix.ksh $RES_BAK

fi
fi

[$QUIET -eq 1] && VERBOSE="off" || VERBOSE="on"

BEGIN

[$QUIET -eq 1] && Q_OUTPUT=">> $SUM_OUT" || Q_OUTPUT="| tee -a $SUM_OUT"
rm $SUM_OUT 2>/dev/null

echo "[Creating: $SUM_OUT]"
echo "[Creating: $RES_OUT]"
echo ""

eval echo "-- $COMMENT" $Q_OUTPUT
eval echo "-- --" $Q_OUTPUT
eval echo "-- Invocation: $0 $PARAMS" $Q_OUTPUT
eval echo "-- `date`" $Q_OUTPUT
Appendix A. Sample scripts 375

eval echo "-- " $Q_OUTPUT

echo "-- $COMMENT" > $RES_OUT
echo "-- --" >> $RES_OUT
echo "-- Invocation: $0 $PARAMS" >> $RES_OUT
echo "-- `date`" >> $RES_OUT
echo "-- " >> $RES_OUT

eval echo db2batch \
-d $DB_NAME \
-f $QUERIES/${QRYNUM}.sql \
-r ${RES_OUT},${SUM_OUT} \
-a db2inst1/db2inst1 \
-c off \
-i complete \
-o r $IROWS f $IFETCH p 5 e $EXPLAIN \
-v $VERBOSE $Q_OUTPUT

eval echo "" $Q_OUTPUT

echo db2batch \
-d $DB_NAME \
-f $QUERIES/${QRYNUM}.sql \
-r ${RES_OUT},${SUM_OUT} \
-a db2inst1/db2inst1 \
-c off \
-i complete \
-o r $IROWS f $IFETCH p 5 e $EXPLAIN \
-v $VERBOSE >> $RES_OUT

echo "" >> $RES_OUT

db2batch \
-d $DB_NAME \
-f $QUERIES/${QRYNUM}.sql \
-r ${RES_OUT}.tmp,${SUM_OUT}.tmp \
-a db2inst1/db2inst1 \
-c off \
-i complete \
-o r $IROWS f $IFETCH p 5 e $EXPLAIN \
-v $VERBOSE

[! -f ${RES_OUT}.tmp] && echo "Error! File not created!
RES_OUT=${RES_OUT}.tmp" &&
exit

cat ${RES_OUT}.tmp >> $RES_OUT && \
rm ${RES_OUT}.tmp

cat ${SUM_OUT}.tmp >> $SUM_OUT && \
rm ${SUM_OUT}.tmp

Prefix selected lines with filename
echo ""
echo "[Modifying: $RES_OUT]"
`dirname $0`/db2bench_prefix.ksh $RES_OUT
#db2batch -d tpc -f queries/2.sql -a db2inst1/db2inst1 -c off -i complete -o r 2
f -1 p 5 e 0 -v off | awk '/Summary of Results/{doprint=1}doprint||/seconds *$/
{print}'
The db2bench.ksh script calls the following db2bench_prefix.ksh file:
#!/bin/ksh
db2bench_prefix.ksh
Raanon Reutlinger, IBM Israel

["$1" = ""] && echo "\
376 DB2 UDB V7.1 Performance Tuning Guide

SYNTAX: `basename $0` {db2batch-Output-Filename} [Override-Prefix]
Prefixes the filename on selected lines from the db2batch-Output file.

" && exit

SOURCE1=$1
SOURCE=`basename $0`.$$.source
TARGET=`basename $0`.$$.tmp

PREFIX=${2:-`basename $SOURCE1`}
export PREFIX

[! -f $SOURCE1] && echo "$SOURCE1 doesn't exist" && exit

To fix problem of missing new-line at end of $SOURCE1 files
awk '{print}' $SOURCE1 > $SOURCE

awk -f `dirname $0`/db2bench_prefix.awk $SOURCE > $TARGET

[! -f $SOURCE -o ! -f $TARGET] && echo "Error! File not created!
SOURCE=$SOURCE
TARGET=$TARGET" &&
exit

LINES_ORIG=`wc -l $SOURCE | awk '{print $1}'`
LINES_TMP=` wc -l $TARGET | awk '{print $1}'`

Only copy over SOURCE1 if number of lines match exactly
[$LINES_ORIG -eq $LINES_TMP] && mv $TARGET $SOURCE1 \

|| echo "Error: file not modified"

As long as SOURCE1 is still around delete TARGET and SOURCE(tmp) if mv failed
[-f $SOURCE1] && rm $TARGET $SOURCE 2>/dev/null

The db2bench.ksh script calls the following db2bench_prefix.awk file. You need
to have it in the same directory.

BEGIN{
TOP = 1;
PREFIX = ENVIRON["PREFIX"];

}
{

PUT_PREFIX = 0 ;
}
#/Statement number: / { TOP=0 }
#TOP { PUT_PREFIX=1 }
(NR <= TOP) { PUT_PREFIX=1 }
/ *** Database Snapshot ***/ { PUT_PREFIX=1 }
/ *** Bufferpool Snapshot ***/ { PUT_PREFIX=1 }
/Bufferpool Name .* = / { PUT_PREFIX=1 }
/ *** Bufferpool Info Snapshot ***/ { PUT_PREFIX=1 }
/ *** Application Info Snapshot ***/ { PUT_PREFIX=1 }
/ *** Application Snapshot ***/ { PUT_PREFIX=1 }
/ *** Statement Details ***/ { PUT_PREFIX=1 }
/Statement operation .* = / { PUT_PREFIX=1 }
/ *** List of Associated Agents ***/ { PUT_PREFIX=1 }
/ *** Tablespace Header Snapshot ***/ { PUT_PREFIX=1 }
/ *** Tablespace Snapshot ***/ { PUT_PREFIX=1 }
/Tablespace Name .* = / { PUT_PREFIX=1 }
/ *** Table Header Snapshot ***/ { PUT_PREFIX=1 }
/ *** Table Snapshot ***/ { PUT_PREFIX=1 }
/Table Name .* = / { PUT_PREFIX=1;TAB=$NF}
Appendix A. Sample scripts 377

/Table File ID .* = / && (TAB == "=") { PUT_PREFIX=1 }
/ *** Database manager Snapshot ***/ { PUT_PREFIX=1 }
/ *** FCM Snapshot ***/ { PUT_PREFIX=1 }

{ sub(/^\[.*\]: /, "") } # Strip existing prefix
PUT_PREFIX{ printf "[%-15.15s]: ", PREFIX } # Prefix
{ print }
378 DB2 UDB V7.1 Performance Tuning Guide

Appendix B. Using the additional material

This redbook also contains additional material in diskette format. See the
appropriate section below for instructions on using or downloading each type
of material.

B.1 Using the diskette

The diskette that accompanies this redbook contains the following:

File name Description
db2bench.ksh Executing db2batch command
db2bench_prefix.awk Executing db2batch command
db2bench_prefix.ksh Executing db2batch command
db2look.ksh Executing db2look command
iostat.ksh Executing iostat command
iostat.awk Executing iostat command
list_proc.ksh Printing application and process information
locks.ksh Display lock information
locks.awk Display lock information
mon_stmt.ksh Report SQL statements information
mon_stmt.awk Report SQL statements information
sqlcache.ksh Display statements in the dynamic SQL cache
sqlcache.awk Display statements in the dynamic SQL cache
upd_cfg.ksh Executing GET DBM CFG or GET DB CFG
upd_cfg.awk Executing GET DBM CFG or GET DB CFG

B.1.1 System requirements for using the diskette

You can use the sample scripts in the diskette on any UNIX operating
systems on which the korn shell and awk are available.

B.1.2 How to use the diskette

As shown in Table 9 on page 120, create a directory “work” under your home
directory and copy the contents of the diskette into this directory. The syntax
to execute each script is shown in Appendix A, “Sample scripts” on page 335.

Before using the scripts, execute the following command to make them
executable:

chmod +x *.ksh
© Copyright IBM Corp. 2000 379

B.2 Locating the additional material on the Internet

The diskette, or Web material associated with this redbook is also available in
softcopy on the Internet from the IBM Redbooks Web server. Point your Web
browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246012

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number.
380 DB2 UDB V7.1 Performance Guide

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Appendix C. Special notices

This publication is intended to help system designers, system administrators,
and database administrators to set up, use, tune and maintain DB2 Universal
Database Version 7.1 for optimal performance. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by DB2 Universal Database Version 7.1. See the
PUBLICATIONS section of the IBM Programming Announcement for DB2
Universal Database Version 7.1 for more information about what publications
are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
© Copyright IBM Corp. 2000 381

that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

e (logo)®
IBM ®
AIX
AT
Current
DB2
DB2 Universal Database
Enterprise Storage Server
Netfinity
RETAIN
SP
Wizard
Lotus
Notes
TME
Cross-Site
Tivoli Certified

Redbooks
Redbooks Logo
AS/400
CT
DataJoiner
DB2 Connect
DRDA
Manage. Anything. Anywhere.
OS/2
RS/6000
System/390
XT
400
Tivoli
NetView
Tivoli Ready
382 DB2 UDB V7.1 Performance Guide

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix C. Special notices 383

384 DB2 UDB V7.1 Performance Guide

Appendix D. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 389.

• Database Performance on AIX in DB2 UDB and Oracle Environments,
SG24-5511

• Understanding IBM RS/6000 Performance and Sizing, SG24-4810

• RS/6000 Performance Tools in Focus, SG24-4989

D.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

D.3 Other resources

These publications are also relevant as further information sources:

• DB2 UDB for UNIX, Quick Beginnings, GC09-2970

• DB2 UDB Installation and Configuration Supplement, GC09-2957

• DB2 UDB SQL Reference, Volume 1, SC09-2974

• DB2 UDB SQL Reference, Volume 2, SC09-2975

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 385

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

• DB2 UDB System Monitor Guide and Reference, SC09-2956

• DB2 UDB Command Reference, SC09-2951

• DB2 UDB Data Movement Utilities Guide, SC09-2955

• DB2 UDB Application Building Guide, SC09-2948

• DB2 UDB Application Development Guide, SC09-2949

• DB2 UDB Call Level Interface Guide and Reference, SC09-2950

• DB2 UDB Administration Guide: Planning, SC09-2946

• DB2 UDB Administration Guide: Implementation, SC09-2944

• DB2 UDB Administration Guide: Performance, SC09-2945

• DB2 UDB Administrative API Reference, SC09-2947

All DB2 UDB manuals are available at the DB2 Product and Service Technical
Library. Visit the following URL:

http://www-4.ibm.com/software/data/db2/library

These publications are relevant as information sources for the performance
tuning on AIX:

• AIX Commands Reference, SBOF-1851

• AIX Performance Tuning Guide by Frank Waters, ISBN 0-13-386707-2

• Accelerating AIX: Performance Tuning for Programmers and System
Administrators by Rudy Chukran, ISBN 0-20-163382-5

AIX standard documentation can be found at:

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/

These publications are relevant as information sources for performance
tuning on Sun Solaris:

• Sun Performance and Tuning: Java and the Internet by Adrian Cockcroft,
Richard Pettit, Sun Microsystems, ISBN 0-13-095249-4

• Solaris Performance Administration: Performance Measurement, Fine
Tuning, and Capacity Planning for Releases 2.5.1 and 2.6 by H. Frank
Cervone, ISBN 0-07-011768-3
386 DB2 UDB V7.1 Performance Guide

D.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www-4.ibm.com/software/data/

IBM Data Management Home Page

• http://www-4.ibm.com/software/data/db2/udb/winos2unix/support/

DB2 Universal Database and DB2 Connect Online Support

• http://www-4.ibm.com/software/data/db2/db2tech/indexsvc.html/

DB2 Maintenance - Fixpaks for DB2 UDB

• http://www.sunworld.com/sunworldonline/common/cockcroft.letters.html/

Adrian Cockcroft's Performance Q&A column in SunWorld

• http://docs.sun.com/

Sun Product Documentation

• http://access1.sun.com/

Sun Software support and consulting

• http://access1.sun.com/patch.recommended/rec.html/

Sun Software support service - Recommended patches for Solaris
Appendix D. Related publications 387

388 DB2 UDB V7.1 Performance Guide

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 389

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
390 DB2 UDB V7.1 Performance Guide

Index

A
access path 156
access plan 156
ACTIVATE DATABASE command 195, 209
Agent Private Memory 196
AGENT_STACK_SZ 199
AIX commands

iostat 131
lsps 133
nmon 128
ps 133
vmstat 131

AIX Logical Volume Manager 40
ALTER BUFFERPOOL 76, 210
ALTER TABLESPACE 53
APP_CTL_HEAP_SZ 198
APPLHEAPSZ 198
Application Global Memory 196
Architecture and Processes Overview 8
ASLHEAPSZ 199
AUDIT_BUF_SZ 197, 222
AVG_APPLS 211

B
BACKBUFSZ 273, 275
BACKUP DATABASE command 271
BIND

Explain options 163
Blocking 223
Buffer Pool 10
buffer pool hit ratio 213
Buffer Pool Size 209
BUFFPAGE 198, 210

C
CHNGPGS_THRESH 215
CLI

description 248
CLI/ODBC/JDBC trace facility 177
CLP commands

RESET MONITOR 140
RUNSTATS 172

Clustered Index 294
Control Center

description 15
© Copyright IBM Corp. 2000
CPU Related Parameters 199
CREATE BUFFERPOOL 210
CREATE EVENT MONITOR 149
CURRENT EXPLAIN MODE 162
CURRENT EXPLAIN SNAPSHOT 162

D
Data Placement 31
Database Configuration Parameter

AGENT_STACK_SZ 199
APP_CTL_HEAP_SZ 198
APPLHEAPSZ 198
ASLHEAPSZ 199
AVG_APPLS 211
BUFFPAGE 198, 210
CHNGPGS_THRESH 215
DBHEAP 198
DEFAULT_DEGREE 200
DRDA_HEAP_SZ 199
ESTORE_SEG_SIZE 76, 218
ESTORE_SEG_SZ 198
LOCKLIST 198
LOGBUFSZ 219
MAXAPPLS 196
MINCOMMIT 220
NUM_ESTORE_SEGS 76, 198, 218
NUM_IOCLEANERS 215
NUM_IOSERVERS 215, 217
PCKCACHESZ 198
QUERY_HEAP_SZ 199
RQRIOBLK 199
SOFTMAX 221
SORTHEAP 198, 201
STAT_HEAP_SZ 199, 290
STMTHEAP 199
UDF_MEM_SZ 199
UTIL_HEAP_SZ 198, 208

Database Global Memory 195
Database Manager Configuration Parameter

AUDIT_BUF_SZ 197, 222
BACKBUFSZ 275
DBF_MON_BUFPOOL 211
FCM_NUM_ANCHORS 197, 206
FCM_NUM_BUFFERS 197, 206
FCM_NUM_CONNECT 197, 206
FCM_NUM_RQB 197, 206
INTRA_PARALLEL 199
391

MAX_QUERYDEGREE 200
MAXAGENTS 196
MON_HEAP_SZ 197
NUM_POOLAGENTS 204
NUMDB 195
PCKCACHESZ 206
RESTBUFSZ 297
SHEAPTHRES 202
UTIL_HEAP_SZ 275

Database Manager Configuration parameter
BACKBUFSZ 273

Database Manager Shared Memory 195
DB configuration 265

DLCHKTIME 269
LOCKLIST 265
LOCKTIMEOUT 268
MAXLOCKS 265

DB2 agents 9
DB2 Registry Variable

DB2_DISABLE_FLUSH_LOG 81
DB2_FORCE_FCM_BP 73
DB2_MMAP_READ 73
DB2_MMAP_WRITE 73
DB2_OVERRIDE_BPF 72
DB2_PARALLEL_IO 49
DB2_STRIPED_CONTAINERS 47
DB2INSTPROF 280
DB2MEMDISCLAIM 196, 205
DB2MEMMAXFREE 196, 205
DB2TCPCONNMGRS 222

DB2_DISABLE_FLUSH_LOG 81
DB2_FORCE_FCM_BP 73
DB2_MMAP_READ 73
DB2_MMAP_WRITE 73
DB2_OVERRIDE_BPF 72
DB2_PARALLEL_IO 49
DB2_STRIPED_CONTAINERS 47
db2adutl 276
db2advis utility 115
db2batch 173
db2chkbp utility 275
db2emcrt 149
db2evmon 153
db2expln 164
DB2INSTPROF 280
db2look 276
DB2MAXFSCRSEARCH registry variable 97
DB2MEMDISCLAIM 196, 205
DB2MEMMAXFREE 196, 205

DB2TCPCONNMGRS 222
DBF_MON_BUFPOOL 211
DBHEAP 198
DEACTIVATE DATABASE command 195
deadlock

detection 269
monitoring 153

Declared Temporary Tables 101
DEFAULT_DEGREE 200
DFT_PREFETCH_SZ 67
Disk I/O Related Parameters 208
Disk Layout 31
DRDA_HEAP_SZ 199
dynexpln 164

E
Enterprise Storage Server (ESS) 50
ESTORE_SEG_SIZE 76, 218
ESTORE_SEG_SZ 198
Event Monitor 147

deadlock events 153
partial record identifier 148
record types 152
removing 151

Event Monitors
maximum number active 151

Explain 156
creating tables 160
CURRENT EXPLAIN MODE special register
162
CURRENT EXPLAIN SNAPSHOT special regis-
ter 162
EXPLAIN option 160
explain snapshot 158
EXPLAIN SNAPSHOT option 160
EXPLAIN statement 161
Explain table 159
explain table 158, 159
special register 162
table descriptions 159

Explainable Statements 160
EXPORT 277
Extended STORagE 218
Extended Storage 76

F
Fast Write Cache (FWC) 45
FCM_NUM_ANCHORS 197, 206
392 DB2 UDB V7.1 Performance Tuning Guide

FCM_NUM_BUFFERS 197, 206
FCM_NUM_CONNECT 197, 206
FCM_NUM_RQB 197, 206
FLUSH EVENT MONITOR 148

G
Generated Columns 91
GET MONITOR SWITCHES 139
GET SNAPSHOT 140

I
I/O server 214
Identity Columns 90
IMPORT 279
Index

Include Columns 108
On-Line Index Reorg 108

Indexes
considerations 106

INTRA_PARALLEL 199
Intra-Partition Parallelism 199
isolation levels 260

choosing 262
read stability (RS) 261
repeatable read 261
setting in static SQL 262
uncommitted read 260

L
LOAD 284
LOB Considerations 94
LOCK TABLE statement 104
LOCKLIST 198, 265
locks

escalation 265
LOCKSIZE 104
LOCKTIMEOUT 268
Log Placement 33
LOGBUFSZ 219
Logging 78
Logs 11
LVM 40
lvm_bufcnt 37, 42

M
max_coalesce 37
MAX_QUERYDEGREE 200

MAXAGENTS 196
MAXAPPLS 196
maxfree 37
MAXLOCKS 265
maxpgahead 37
Memory Model 194
Memory Related Parameters 201
MINCOMMIT 220
minfree 37
Mirror Write Consistency 41
Mirroring 35, 38
MON_HEAP_SZ 197
Monitoring Tools 119
Multi-Page File Allocation 50

N
NUM_ESTORE_SEGS 76, 198, 218
NUM_IOCLEANERS 215
NUM_IOSERVERS 215, 217
NUM_POOLAGENTS 204
NUMDB 195

O
ODBC

standard 248
On-Line Index Reorg 108

P
Page Cleaners 210, 215, 216
Page cleaners 10, 214
PCKCACHESZ 198, 206
Prefetchers 10
Prefetching 210
PREFETCHSIZE 67

Q
query processing

description 157
QUERY_HEAP_SZ 199

R
RAID 35

SSA RAID Array Parameters 42
RAID 10 36, 39
RAID 5 36, 38
Recovering Dropped Tables 105
RENAME TABLESPACE 70
393

REORG 276
REORGCHK 276
REORGCHK command 214
RESET MONITOR ALL 140
Resetting Snapshot Monitor Switches 140
RESTBUFSZ 297
RESTORE DATABASE 294
RQRIOBLK 199
RUNSTATS 276

when to use 172

S
Scheduling Policy 38
SET EVENT MONITOR 150
Snapshot Monitor 136

resetting counters 140
switches 139

SOFTMAX 221
SORTHEAP 198, 201
sorting 201–204

Overflowed and Non-Overflowed 201
Piped and Non-Piped 201
SHEAPTHRES 202

special registers
CURRENT EXPLAIN MODE 162
CURRENT EXPLAIN SNAPSHOT 162
Explain 162

SQL compiler 229
SQL optimizer 171
SQL statements (DDL)

DROP EVENT MONITOR 151
STAT_HEAP_SZ 199, 290
static embedded SQL 243
STMTHEAP 199
stored procedure 240

nested procedure 241
Striping 35, 37
Summary Tables 103

T
Table

APPEND MODE 98
Data Types 88
Denormalizing 88
Normalizing 85
NOT LOGGED INITIALLY option 99
Not Null 89
Performance 85

Recovering Dropped Tables 105
table scan 169
Table Space

DMS Table Space 53
Extent Size 65
Long Table Space 55
Overhead 62
Page Size 63
Prefetch Size 67
Regular Table Space 54
Rename 70
SMS Table Space 52
System Temporary Table Spaces 55
Transfer Rate 62
User Temporary Table Spaces 55

U
UDF_MEM_SZ 199
UPDATE MONITOR SWITCHES 136
UPDATE MONITOR SWITCHES command 211
UTIL_HEAP_SZ 198, 208, 275

V
Visual Explain

dynamic 167
interpreting output 167
invoking 165
operators 168

vmtune command 37

W
Write Scheduling Policy 40
Write Verify 41
394 DB2 UDB V7.1 Performance Tuning Guide

© Copyright IBM Corp. 2000 395

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 845 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-6012-00
DB2 UDB V7.1 Performance Tuning Guide

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

(0.5” spine)
0.475”<->0.875”

250 <-> 459 pages

DB2 UDB V7.1 Perform
ance Tuning Guide

®

SG24-6012-00 ISBN 0738418595

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DISKETTE
INCLUDED

DB2 UDB V7.1
Performance Tuning
Guide
A comprehensive
guide to improving
DB2 UDB database
performance

Efficient disk layout,
logical and physical
database design

Many tips to improve
database
performance

This IBM Redbook will provide you with guidelines for system
design, database design, and application design with DB2
UDB for AIX Version 7.1. We will also discuss the methods that
are available for performance analysis and tuning.

Prior to reading this book, you need to have some knowledge
of database environments, as well as a basic understanding
of activities that are typically performed in a database
environment.

This book was written from the AIX operating system
perspective, and some tools and commands discussed in this
book may not be available on other operating systems.
However, the hints and methodologies described in this book
can be applicable for database systems which use DB2 UDB
on other operating systems.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Overview
	1.1 Measuring system performance
	1.2 Determining when system tuning will be cost-effective
	1.3 Causes of performance problems
	1.4 Deciding when to tune the system
	1.5 Planning performance tuning
	1.5.1 Locate problems and establish goals
	1.5.2 Identify the cause
	1.5.3 Change one performance parameter at a time

	1.6 Architecture and process overview
	1.6.1 DB2 agents
	1.6.2 Buffer pools
	1.6.3 Prefetchers
	1.6.4 Page cleaners
	1.6.5 Logs
	1.6.6 Deadlock detector

	Chapter 2. Setting up the Control Center
	2.1 Control Center
	2.2 How to set up the control center
	2.2.1 Install the file set
	2.2.2 Setting up the administration server
	2.2.3 Run the Control Center locally or remotely
	2.2.4 Java application or Java applet
	2.2.5 Machine configuration scenario
	2.2.6 Control Center services setup
	2.2.7 Start the Control Center as a Java application
	2.2.8 Start the Control Center as a Java applet

	2.3 Performance tuning using Control Center
	2.3.1 Setting up configuration parameters
	2.3.2 Using the Configure Performance Wizard
	2.3.3 Is this all I need to do for performance tuning?
	2.3.4 Index Advisor Wizard

	2.4 DB2 UDB wizards

	Chapter 3. Data storage management for performance
	3.1 Disk layout
	3.1.1 Data placement
	3.1.2 Log placement
	3.1.3 Data availability and performance
	3.1.4 General performance recommendations

	3.2 Mirroring, striping, and using RAID devices
	3.2.1 Summary of the most popular RAID levels
	3.2.2 Performance considerations
	3.2.3 AIX logical volume parameters
	3.2.4 SSA RAID array parameters
	3.2.5 Effects on table space configuration
	3.2.6 The DB2_STRIPED_CONTAINERS variable
	3.2.7 The DB2_PARALLEL_IO variable
	3.2.8 Multi-page file allocation
	3.2.9 Using Enterprise Storage Server

	3.3 Table spaces: performance considerations
	3.3.1 SMS table spaces
	3.3.2 DMS table spaces
	3.3.3 SMS versus DMS
	3.3.4 Table space categories
	3.3.5 Choosing table space types for data tables
	3.3.6 Deciding number of tables and table spaces
	3.3.7 Choosing table space containers
	3.3.8 Configuring table space containers
	3.3.9 Deciding how many containers to use
	3.3.10 Other tips

	3.4 Buffer pools
	3.4.1 Mapping table spaces to buffer pools
	3.4.2 Buffer pool memory
	3.4.3 Extended storage

	3.5 Database logs
	3.5.1 Why logging performance is important
	3.5.2 Filesystem or raw logical volume
	3.5.3 Mirroring
	3.5.4 Placement on disks
	3.5.5 Number of log files
	3.5.6 Size of logs
	3.5.7 Flushing logs during on-line backup

	3.6 Before creating a database
	3.6.1 Number of instances
	3.6.2 Number of databases per instance

	Chapter 4. Database design
	4.1 Tables and performance
	4.1.1 What to consider before creating tables
	4.1.2 LOB considerations
	4.1.3 Creating tables
	4.1.4 Table locks
	4.1.5 Recovering dropped tables

	4.2 Indexes
	4.2.1 Separate table space for indexes?
	4.2.2 Free space
	4.2.3 Include columns
	4.2.4 Clustering indexes
	4.2.5 Index Advisor Wizard
	4.2.6 Other performance tips for indexes

	4.3 64-bit engine
	4.3.1 Libraries

	Chapter 5. Monitoring tools and utilities
	5.1 Measuring and monitoring
	5.2 Maintaining tuning information
	5.2.1 States subdirectory
	5.2.2 Queries subdirectory
	5.2.3 Results subdirectory

	5.3 AIX monitoring tools
	5.3.1 Online monitor — nmon
	5.3.2 Virtual memory statistics — vmstat
	5.3.3 Disk I/O statistics — iostat
	5.3.4 List paging space — lsps
	5.3.5 Process state — ps

	5.4 DB2 UDB tools
	5.4.1 Obtaining database access information
	5.4.2 Snapshot monitor
	5.4.3 Event Monitor
	5.4.4 The Explain Facility
	5.4.5 The db2batch utility
	5.4.6 CLI/ODBC/JDBC Trace Facility

	Chapter 6. Tuning configuration parameters
	6.1 Configuration parameters
	6.1.1 Database manager configuration parameters
	6.1.2 Database configuration parameters

	6.2 Memory model
	6.2.1 Types of memory used by DB2 UDB
	6.2.2 How memory is used

	6.3 CPU related parameters
	6.3.1 Intra-partition parallelism
	6.3.2 Controlling the number of DB2 agent processes

	6.4 Memory related parameters
	6.4.1 Sorting methods
	6.4.2 Agent pool size
	6.4.3 Disclaim memory areas for DB2 agents
	6.4.4 FCM related parameters
	6.4.5 Package cache size
	6.4.6 Utility heap size

	6.5 Disk I/O related parameters
	6.5.1 Buffer pool size (buffpage)
	6.5.2 Extended STORagE (ESTORE)
	6.5.3 Logging

	6.6 Network related parameters
	6.6.1 Number of TCP/IP connection managers
	6.6.2 Blocking

	Chapter 7. Tuning application performance
	7.1 Writing better SQL statements
	7.1.1 Specify only needed columns in the select list
	7.1.2 Limit the number of rows by using predicates
	7.1.3 Specify the FOR UPDATE clause
	7.1.4 Specify the OPTIMIZE FOR n ROWS clause
	7.1.5 Specify the FETCH FIRST n ROWS ONLY clause
	7.1.6 Specify the FOR FETCH ONLY clause
	7.1.7 Avoid data type conversions

	7.2 Minimize data transmission
	7.2.1 Compound SQL
	7.2.2 Stored procedures

	7.3 Embedded SQL program
	7.3.1 Static SQL
	7.3.2 Dynamic SQL

	7.4 Call Level Interface and ODBC
	7.4.1 Improve performance of CLI/ODBC applications

	7.5 Java interfaces (JDBC and SQLJ)
	7.6 Concurrency
	7.6.1 Issue COMMIT statements
	7.6.2 Specify FOR FETCH ONLY clause
	7.6.3 INSERT, UPDATE, and DELETE at end of UOW
	7.6.4 Isolation levels
	7.6.5 Eliminate next key locks
	7.6.6 Close cursor with release
	7.6.7 Lock escalation
	7.6.8 Lock wait behavior

	Chapter 8. Tuning database utilities
	8.1 BACKUP DATABASE utility
	8.1.1 Command options
	8.1.2 Configuration parameters
	8.1.3 DB2CHKBP
	8.1.4 DB2ADUTL
	8.1.5 DB2LOOK
	8.1.6 RUNSTATS, REORGCHK, and REORG

	8.2 EXPORT utility
	8.3 IMPORT utility
	8.3.1 METHOD options
	8.3.2 MODIFIED BY COMPOUND=x
	8.3.3 COMMITCOUNT n
	8.3.4 Logging

	8.4 LOAD utility
	8.4.1 Command options
	8.4.2 Considerations for creating an index
	8.4.3 Load query
	8.4.4 Loading data into a table with clustered index

	8.5 RESTORE DATABASE utility
	8.5.1 Command options
	8.5.2 Configuration parameters

	Chapter 9. Resolving performance problems
	9.1 Identifying the cause
	9.2 Application problems
	9.2.1 Explaining the statements
	9.2.2 Monitoring the application/database

	9.3 Database configuration problems
	9.4 Data access problems
	9.5 Case study
	9.5.1 Non-tuned environment
	9.5.2 Tune configuration parameters
	9.5.3 Add a new index
	9.5.4 Increase buffer pool size
	9.5.5 Add a new index
	9.5.6 Reorganize table

	Appendix A. Sample scripts
	A.1 Executing db2look
	A.2 Executing GET DBM CFG / GET DB CFG
	A.3 Display statements in the dynamic SQL cache
	A.4 Disk I/O activity
	A.5 Lock information
	A.6 Statement Event Monitor
	A.7 Benchmark tool

	Appendix B. Using the additional material
	B.1 Using the diskette
	B.1.1 System requirements for using the diskette
	B.1.2 How to use the diskette

	B.2 Locating the additional material on the Internet

	Appendix C. Special notices
	Appendix D. Related publications
	D.1 IBM Redbooks
	D.2 IBM Redbooks collections
	D.3 Other resources
	D.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

